Lazy Student
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:

The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.

Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.

Input

The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.

Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.

It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.

Output

If Vladislav has made a mistake and such graph doesn't exist, print  - 1.

Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.

Sample test(s)
input
4 5
2 1
3 1
4 0
1 1
5 0
output
2 4
1 4
3 4
3 1
3 2
input
3 3
1 0
2 1
3 1
output
-1

题意:首先先取一个图的其中一个MST,给出这个图的所有边权,以及每条边是否在这个MST里。要你按照这些边权构造一个图,使得这个MST仍是你构造的那个图的其中一个MST。

分析:考虑Kruscal的过程。

不妨假设MST的边都连着1,即这些边是1-2,1-3,1-4,。。。。1-n这样连的。

那Kruscal的过程中,如果一条边不选,必定连着前面的任意两个点。

注意考虑边权相同,MST不唯一的情况。

至于某条不是MST的边如何连前面两个点,随便维护一下就好。

 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
struct EdgeType
{
int index, value;
bool select;
int u, v; inline bool operator <(const EdgeType &t) const
{
if(value != t.value) return value < t.value;
if(select ^ t.select) return select > t.select;
return index < t.index;
}
} arr[N];
typedef pair<int, int> Edge;
priority_queue<Edge> que;
int n, m; inline void Input()
{
n = Getint();
m = Getint();
for(int i = ; i < m; i++)
{
arr[i].value = Getint();
arr[i].select = Getint();
arr[i].index = i;
}
} inline bool CompareByIndex(const EdgeType &a, const EdgeType &b)
{
return a.index < b.index;
} inline void Solve()
{
sort(arr, arr + m); int now = ;
for(int i = ; i < m; i++)
{
if(arr[i].select)
{
arr[i].u = , arr[i].v = ++now;
if(now > ) que.push(Edge(now, now));
}
else
{
if(que.empty())
{
puts("-1");
return;
}
Edge t = que.top();
que.pop();
arr[i].u = --t.first, arr[i].v = t.second;
if(t.first > ) que.push(t);
}
} sort(arr, arr + m, CompareByIndex);
for(int i = ; i < m; i++) printf("%d %d\n", arr[i].u, arr[i].v);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}

CF#335 Lazy Student的更多相关文章

  1. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心

    D. Lazy Student   Student Vladislav came to his programming exam completely unprepared as usual. He ...

  2. Codeforces Round #335 (Div. 2) D. Lazy Student 构造

    D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...

  3. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造

    题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...

  4. 605B. Lazy Student(codeforces Round 335)

    B. Lazy Student time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  5. cf 605B B. Lazy Student 构造 好题

    题意: 一个n个节点的图,有m条边,已知这个图的一个mst 现在如果我们知道这个图的m条边,和知道mst的n-1条边是哪些,问能不能构造出一个满足条件的图 思路:排序+构造 数组deg[i]表示节点i ...

  6. CF#335 Freelancer's Dreams

    Freelancer's Dreams time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. 【22.73%】【codeforces 606D】Lazy Student

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. CF#335 Intergalaxy Trips

     Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  9. CF#335 Board Game

    Board Game time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. NYOJ之水仙花数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsAAAAInCAIAAAAZDHiCAAAgAElEQVR4nO3dPVLjzNoG4G8T5CyEFC

  2. 1.5 STL中大小相等的概念

    1) 2)

  3. ViewPager部分源码分析一:加载数据

    onMeasure()调用populate(),完成首次数据初始化. populate()维护ViewPager的page,包括mItems和mAdapter. populate(): if (cur ...

  4. 并发中的Native方法,CAS操作与ABA问题

    Native方法,Unsafe与CAS操作 >>JNI和Native方法 Java中,通过JNI(Java Native Interface,java本地接口)来实现本地化,访问操作系统底 ...

  5. Ubuntu下安装Python3.4

    转自:http://blog.sina.com.cn/s/blog_7cdaf8b60102vf2b.html 1. 通过命令行安装Python3.4,执行命令:sudo apt-get instal ...

  6. Sublime Text + CTags + Cscope (部分替代Source Insight)

    CTags & cscope 下载: CTags+Cscope --- 我的百度云盘下载http://pan.baidu.com/s/1gfyPnuN ctags58.zip --- src ...

  7. 【网络资料】Astar算法详解

    关于A*算法,很早就想写点什么,可是貌似天天在忙活着什么,可事实又没有做什么,真是浮躁啊!所以今晚还是来写一下总结吧! A*算法是很经典的只能启发式搜索算法,关于只能搜索算法和一般的搜索算法(例如DF ...

  8. 命令行登陆Oracle(包括远程登陆)

    本方法适用于在cmd命令行窗口以及pl/sql登陆Oracle下登录本机或者远程Oracle. 1.首先保证在当前主机上设置了ORACLE_HOME环境变量:     例如:ORACLE_HOME=D ...

  9. 攻城狮在路上(壹) Hibernate(五)--- 映射一对多关联关系

    关联是有方向的,包含单向关联和双向关联.分别讨论.本文以客户Customer和订单Order来进行讨论:一个Customer有多个Order,每个Order对应一个Customer. Customer ...

  10. 直接拿来用!最火的Android开源项目(完结篇)(转)

    摘要:截至目前,在GitHub“最受欢迎的开源项目”系列文章中我们已介绍了40个Android开源项目,对于如此众多的项目,你是Mark.和码友分享经验还是慨叹“活到老要学到老”?今天我们将继续介绍另 ...