【uoj262】 NOIP2016—换教室
http://uoj.ac/problem/262 (题目链接)
题意
有${n}$个时间段,第${i}$个时间段可以选择在${c_i}$教室上课,也可以选择申请换课,有${k_i}$概率申请通过,在${d_i}$上课,另外${1-k_i}$的概率留在${c_i}$教室。 总共有${v}$个教室,${e}$条路径双向联通教室${x_i}$和${y_i}$,路径有权值${w_i}$。在课间时(相邻两个时间段的间隔中),你要从上一个教室走最短路径到下一个教室。 现在你有${m}$次申请机会,只能提前申请一堆换课(也就是你不能在知道某一次申请结果后再去申请下一个换课)。求总距离的最小期望。
Solution
跟去年那道子串好像啊。。
先floyd算出图中两两点之间的距离,然后dp。
用${f[i][j]}$表示上到第${i}$堂课,已经申请了${j}$次,并且第${i}$堂课的教室被申请,所花费的总体力。
用${g[i][j]}$表示上到第${i}$堂课,已经申请了${j}$次,并且第${i}$堂课的教室没有被申请,所花费的总体力。
转移很显然$${f[i][j]=Min(f[i-1][j-1]+dis,g[i-1][j-1]+dis)}$$
$${g[i][j]=Min(f[i-1][j]+dis,g[i-1][j]+dis)}$$
细节
注意Floyd的总点数是V(好像坑了好多人)。
代码
// uoj262
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define inf 2147483640
#define LL long long
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=2010;
int n,m,E,V;
int c[maxn],d[maxn];
double dis[maxn][maxn],K[maxn],f[maxn][maxn],g[maxn][maxn]; void Floyd() {
for (int k=1;k<=V;k++)
for (int i=1;i<=V;i++)
for (int j=1;j<=V;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
void dp() {
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++) f[i][j]=g[i][j]=inf;
g[1][0]=f[1][1]=0;
for (int i=2;i<=n;i++)
for (int j=0;j<=min(i,m);j++) {
if (j) {
f[i][j]=f[i-1][j-1]+K[i-1]*K[i]*dis[d[i-1]][d[i]];
f[i][j]+=K[i-1]*(1-K[i])*dis[d[i-1]][c[i]];
f[i][j]+=(1-K[i-1])*K[i]*dis[c[i-1]][d[i]];
f[i][j]+=(1-K[i-1])*(1-K[i])*dis[c[i-1]][c[i]];
f[i][j]=min(f[i][j],g[i-1][j-1]+K[i]*dis[c[i-1]][d[i]]+(1-K[i])*dis[c[i-1]][c[i]]);
}
g[i][j]=min(f[i-1][j]+K[i-1]*dis[d[i-1]][c[i]]+(1-K[i-1])*dis[c[i-1]][c[i]],g[i-1][j]+dis[c[i-1]][c[i]]);
}
}
int main() {
scanf("%d%d%d%d",&n,&m,&V,&E);
for (int i=1;i<=n;i++) scanf("%d",&c[i]);
for (int i=1;i<=n;i++) scanf("%d",&d[i]);
for (int i=1;i<=n;i++) scanf("%lf",&K[i]);
for (int i=1;i<=V;i++) {
for (int j=1;j<=V;j++) dis[i][j]=inf;
dis[i][i]=0;
}
for (int u,v,w,i=1;i<=E;i++) {
scanf("%d%d%d",&u,&v,&w);
dis[u][v]=min(dis[u][v],(double)w);
dis[v][u]=min(dis[v][u],(double)w);
}
Floyd();
dp();
double ans=inf;
for (int i=0;i<=m;i++) ans=min(ans,min(f[n][i],g[n][i]));
printf("%.2lf",ans);
return 0;
}
【uoj262】 NOIP2016—换教室的更多相关文章
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- BZOJ 4720 [Noip2016]换教室
4720: [Noip2016]换教室 Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i( ...
- 【BZOJ】4720: [Noip2016]换教室
4720: [Noip2016]换教室 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1690 Solved: 979[Submit][Status ...
- bzoj4720: [Noip2016]换教室(期望dp)
4720: [Noip2016]换教室 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1294 Solved: 698[Submit][Status ...
- [NOIP2016]换教室 题解(奇怪的三种状态)
2558. [NOIP2016]换教室 [题目描述] 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1< ...
- 【bzoj4720】[NOIP2016]换教室
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...
- [NOIp2016] 换教室
题目类型:期望\(DP\) 传送门:>Here< 题意:现有\(N\)个时间段,每个时间段上一节课.如果不申请换教室,那么时间段\(i\)必须去教室\(c[i]\)上课,如果申请换课成功, ...
- [NOIP2016]换教室(概率期望$DP$)
其实吧我老早就把这题切了--因为说实话,这道题确实不难啊--李云龙:比他娘的状压DP简单多了 今天我翻以前在Luogu上写的题解时,突然发现放错代码了,然后被一堆人\(hack\)--蓝瘦啊\(ORZ ...
- 【bzoj4720】[NOIP2016]换教室 期望dp
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...
- NOIP2016换教室 BZOJ 4720
BZOJ 4720 换教室 题目描述: 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上 ...
随机推荐
- two sample ttest & paired ttst
来源:http://www.pinzhi.org/thread-1023-1-1.html 成对t检验Paired Test是对来自同一总体的样本,在不同条件影响下获取的2组样本进行分析,以评价不同条 ...
- Easyui Tree方法扩展 - getLevel(获取节点级别)
Easyui Tree一直就没有提供这个方法,以前没有用到,所以一直没怎么在意,这次自己用到了,顺便扩展了一个方法,分享给大家. $.extend($.fn.tree.methods, { getLe ...
- 解决Ehcache缓存警告问题
警告: Creating a new instance of CacheManager using the diskStorePath "D:\Apache Tomcat 6.0.18\te ...
- JAVA CDI 学习(1) - @Inject基本用法
CDI(Contexts and Dependency Injection 上下文依赖注入),是JAVA官方提供的依赖注入实现,可用于Dynamic Web Module中,先给3篇老外的文章,写得很 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- 爱春秋之戏说春秋 Writeup
爱春秋之戏说春秋 Writeup 第一关 图穷匕见 这一关关键是给了一个图片,将图片下载到本地后,打开以及查看属性均无任何发现,尝试把图片转换为.txt格式.在文本的最后发现这样一串有规律的代码: 形 ...
- 在线音乐网站【04】Part two 功能实现
上一篇博客里面已近总结了三个功能的具体实现,今天把剩余功能的具体实现补充总结,如果你想对整个小项目有清楚的了解,建议去看下前几篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2 ...
- PC互联网和移动互联网的本质差别
网一代,我们先称为PC互联网,这大约可以从2010年作为分界,然后就是基于手机,及可穿戴的移动互联网. 在PC时代,软件都很庞大复杂,甚至客端端和网页混合,比如常见的桌面软件,Office及Photo ...
- Javascript 模块化开发上线解决方案
最近又换部门了,好频繁地说...于是把这段时间搞的小工具们简单整理了一下,作了一个小的总结.这次用一个简单业务demo来向大家介绍一下Javascript模块化开发的方式和自动化合并压缩的一些自己的处 ...
- go linux 学习记录
1 yum install mercurial 安装mercurial包 2 yum install git 安装git包 3 yum install gcc 安装gcc 4 然后就可以下载gola ...