A Simple Math Problem

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2441    Accepted Submission(s): 1415

Problem Description
Lele now is thinking about a simple function f(x).

If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .

Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.

 
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
 
Output
For each case, output f(k) % m in one line.
 
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
 
Sample Output
45
104
 
Author
linle
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1588 3117 2276 2256 2254 
 

开始没什么思路,后来还是没思路..

然后看解题报告,发现时乘法矩阵,关键点还是在构造矩阵上。

参考:http://blog.sina.com.cn/s/blog_79b832820100wnu3.html

f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10)

构造的矩阵是:

|0 1 0 ........... 0|    |f0|    |f1 |
|0 0 1 0 ........ 0|    |f1|    |f2 |
|.....................1| * |...| = |...|
|a9 a8 .........a0 |    |f9|    |f10|

设为矩阵 A * 矩阵B =矩阵C

我们要求的是 f(k),就是矩阵C的最后一个元素,故依据矩阵的结合律,可看到

C=A*(A*(.....*(A*B))) ,要有k个A即 C=A^k*B ,然后就可以二分求A^k,最后乘上B就可以求得矩阵C

 //0MS    232K    1214 B    C++
#include<stdio.h>
#include<string.h>
#define N 15
struct matrix{
int g[N][N];
}ans,temp;
int g[N];
int m;
matrix mul(matrix a,matrix b)
{
matrix c;
for(int i=;i<;i++)
for(int j=;j<;j++){
c.g[i][j]=;
for(int k=;k<;k++)
c.g[i][j]+=a.g[i][k]*b.g[k][j];
c.g[i][j]%=m;
}
return c;
}
void solve(int k)
{
while(k){
if(k&) ans=mul(temp,ans);
temp=mul(temp,temp);
k/=;
}
int sum=;
/*
for(int i=0;i<10;i++)
for(int j=0;j<10;j++)
printf(j==9?"%d\n":"%d ",ans.g[i][j]);
*/
for(int i=;i<;i++){
sum+=ans.g[][i]*i;
sum%=m;
}
printf("%d\n",sum);
}
int main(void)
{
int k;
while(scanf("%d%d",&k,&m)!=EOF)
{
for(int i=;i<;i++)
for(int j=;j<;j++)
temp.g[i][j]=ans.g[i][j]=;
for(int i=;i<;i++)
scanf("%d",&g[i]);
for(int i=;i<;i++){
if(i<) temp.g[i][i+]=;
ans.g[i][i]=;
temp.g[][i]=g[-i];
}
solve(k-);
}
return ;
}

hdu 1757 A Simple Math Problem (乘法矩阵)的更多相关文章

  1. HDU 1757 A Simple Math Problem 【矩阵经典7 构造矩阵递推式】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (J ...

  2. HDU 1757 A Simple Math Problem (矩阵乘法)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. HDU 1757 A Simple Math Problem(矩阵高速幂)

    题目地址:HDU 1757 最终会构造矩阵了.事实上也不难,仅仅怪自己笨..= =! f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 ...

  4. HDU 1757 A Simple Math Problem(矩阵快速幂)

    题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...

  5. hdu 1757 A Simple Math Problem(矩阵快速幂乘法)

    Problem Description Lele now is thinking about a simple function f(x). If x < f(x) = x. If x > ...

  6. hdu 1757 A Simple Math Problem (矩阵快速幂)

    Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 10 ...

  7. hdu 1757 A Simple Math Problem (矩阵快速幂,简单)

    题目 也是和LightOJ 1096 和LightOJ 1065 差不多的简单题目. #include<stdio.h> #include<string.h> #include ...

  8. hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)

    题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...

  9. hdu 1757 A Simple Math Problem (矩阵高速幂)

    和这一题构造的矩阵的方法同样. 须要注意的是.题目中a0~a9 与矩阵相乘的顺序. #include <iostream> #include <cstdio> #include ...

随机推荐

  1. Java基础之-ExecutorService

    翻译javadoc系列文章之:ExecutorService /** * An {@link Executor} that provides methods to manage termination ...

  2. C# 深拷贝通用方法

    C#深拷贝通用方法(引用类型的拷贝) /// <summary> /// 深度COPY /// </summary> /// <typeparam name=" ...

  3. [Spring] - 动态设置properties

    Spring的jar包用来做动态properties的getter/setter赋值方法: 1:需要的jar包: spring-beans-3.2.0.RC2.jar commons-logging- ...

  4. Mysql 自定义HASH索引带来的巨大性能提升----[真相篇]

    推倒重来 俗话说no zuo no die why you try,这时候我又忍不住zuo了,吭哧吭哧的把解决过程发上博客,向全世界宣布,哥又搞定个难题. 剧情的发展往往是看起来主角完全掌握了局势的情 ...

  5. 显示hello

    The modern user interface is constructed from visual objects of various sorts. Depending on the oper ...

  6. Python正则表达式指南

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...

  7. c# 高效率导出多维表头excel

    [DllImport("User32.dll", CharSet = CharSet.Auto)] public static extern int GetWindowThread ...

  8. 关于sql server远程访问Oracle数据库 OpenQuery查询返回多条数据的问题

    在Sql Server远程访问Oracle 中的数据库表时: 远程语法通常为: select * from OpenQuery(Oracle链接服务器名称,‘查询语句’) eg: select * f ...

  9. 创建线程方式-NSThread

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  10. the philosophy behind of the design of the STL

    The concept of STL is based on a separation of data and operations. The data is managed by container ...