求解区间最值 - RMQ - ST 算法介绍
解析
ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值。O(nlogn) 的预处理和 O(1) 的查询对于需要大量询问的场景是非常适用的。接下来我们就来详细了解下 ST 算法的处理过程。
比如有如下长度为 10 的数组:
1 3 2 4 9 5 6 7 8 0
我们要查询 [1, 7] 之间的最大值,如果采用朴素的线性查找,复杂度O(n),而 ST 算法却只需要 O(1)的时间复杂度,因为 ST 算法预处理了一个 dp 数组。
我们用 dp[i][j] 表示从 i 开始的 2^j 个数的最值,表示 dp[i][j] “管辖” index=i 开始的 2^j 个数字,那么很显然,任何一段区间都能被两个 dp 元素管辖到。比如上面说的 [1, 7],就能被dp[1][2] 和 dp[4][2]管辖到,而 max(dp[1][2], dp[4][2])也就是[1, 7] 的最值了。
如何得出是 dp[1][2] 和 dp[4][2] 这两个元素?很简单,让dp[1][n](2^n <= 区间个数)中的n尽可能大就得到了第一个元素,从而可以推得第二个元素,两个元素的管辖范围大小是一样的。
这样我们只需预处理一个 dp 数组就可以了,而这个预处理是一个动态规划的过程,转移方程为:
dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
而 dp 数组的预处理和 RMQ 的求解过程正好是个逆过程。
实战
POJ 上有一道 ST 算法的模板题 Balanced Lineup,只需预处理两个数组即可,一个表示最大值,另一个表示最小值。
完整代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 50005
int maxn[N][32], minn[N][32];
int a[N];
void ST(int n) {
for (int i = 1; i <= n; i++)
maxn[i][0] = minn[i][0] = a[i];
int k = log(n * 1.0) / log(2.0);
for (int j = 1; j <= k; j++)
for (int i = 1; i <= n; i++) {
if (i + (1 << j) - 1 > n) break;
maxn[i][j] = max(maxn[i][j - 1], maxn[i + (1 << (j - 1))][j - 1]);
minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
}
}
int getAns(int x, int y) {
int k = log(y - x + 1.0) / log(2.0);
return max(maxn[x][k], maxn[y + 1 - (1 << k)][k]) - min(minn[x][k], minn[y + 1 - (1 << k)][k]);
}
int main() {
int n, cas;
scanf("%d%d", &n, &cas);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
ST(n);
while (cas--) {
int x, y;
scanf("%d%d", &x, &y);
printf("%d\n", getAns(x, y));
}
return 0;
}
Javascript模板:
var G = {
dp: [], // dp[i][j] 表示从 index=i 开始的连续 2^j 个元素中的最值
init: function(a) {
var n = a.length;
for (var i = 0; i < n; i++)
G.dp[i] = [], G.dp[i][0] = a[i];
var k = ~~(Math.log(n) / Math.log(2));
for (var j = 1; j <= k; j++)
for (var i = 0; i < n; i++) {
if (i + (1 << j) - 1 >= n) break;
// 如果求区间最小值,改为 Math.min() 即可
G.dp[i][j] = Math.max(G.dp[i][j - 1], G.dp[i + (1 << (j - 1))][j - 1]);
}
},
getAns: function(x, y) {
var k = ~~(Math.log(y - x + 1) / Math.log(2));
// 如果求区间最小值,改为 Math.min() 即可
return Math.max(G.dp[x][k], G.dp[y + 1 - (1 << k)][k]);
}
};
var a = [1, 3, 2, 4, 8, 7, 6, 5, 9, 0] // 需要求 RMQ 的数组
G.init(a);
// test cases
for (var i = 0; i < 10; i++)
for (var j = i + 1; j < 10; j++) {
var tmp = a.slice(i, j + 1)
, normalAns = Math.max.apply(null, tmp)
, stAns = G.getAns(i, j);
if (normalAns !== stAns)
console.log('Algorithm went wrong!');
}
求解区间最值 - RMQ - ST 算法介绍的更多相关文章
- 【原创】RMQ - ST算法详解
ST算法: ID数组下标: 1 2 3 4 5 6 7 8 9 ID数组元素: 5 7 3 1 4 8 2 9 8 1.ST算法作 ...
- HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day ...
- 关于基础RMQ——ST算法
RMQ,Range Maximum/Minimum Query,顾名思义,就是询问某个区间内的最大值或最小值,今天我主要记录的是其求解方法--ST算法 相对于线段树,它的运行速度会快很多,可以做到O( ...
- [POJ3264]Balanced Lineup(RMQ, ST算法)
题目链接:http://poj.org/problem?id=3264 典型RMQ,这道题被我鞭尸了三遍也是醉了…这回用新学的st算法. st算法本身是一个区间dp,利用的性质就是相邻两个区间的最值的 ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
- RMQ st算法 区间最值模板
#include<bits/stdc++.h> ; ; int f[N][Logn],a[N],lg[N],n,m; int main(){ cin>>n>>m; ...
- Balanced Lineup:线段树:区间最值 / RMQ
不要被线段树这个名字和其长长的代码吓到. D - Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ...
- POJ 3368 Frequent values RMQ ST算法/线段树
Frequent values Time Limit: 2000MS Memory Lim ...
- RMQ(模板 ST 区间最值,频繁的间隔时间)
PS: 介绍:http://blog.csdn.net/liang5630/article/details/7917702 RMQ算法.是一个高速求区间最值的离线算法,预处理时间复杂度O(n*log( ...
随机推荐
- Innodb行锁源码学习(一)
Innodb是mysql数据库中目前最流行的存储引擎,innodb相对其它存储引擎一个很大的特点是支持事务,并且支持行粒度的锁.今天我重点跟大家分享下innodb行锁实现的基础知识.由于篇幅比较大,文 ...
- Angularjs之如何在跨域请求中传输Cookie
一般情况我们在使用WebApi之类的技术时,都会遇到跨域的问题,这个只需要在服务端做一下处理即可. 如果这些GET或POST请求不需要传递Cookie数据的话,就没什么问题了,但如果需要,那么会发现 ...
- InnoDB源码分析--缓冲池(三)
转载请附原文链接:http://www.cnblogs.com/wingsless/p/5582063.html 昨天写到了InnoDB缓冲池的预读:<InnoDB源码分析--缓冲池(二)> ...
- 命令行选项解析函数(C语言):getopt()和getopt_long()
命令行选项解析函数(C语言):getopt()和getopt_long() 上午在看源码项目webbench时,刚开始就被一个似乎挺陌生函数getopt_long()给卡住了,说实话这函数没怎么见过, ...
- HQL的一些语句总结
HQL原文来自:http://slaytanic.blog.51cto.com/2057708/782175/ Slaytanic老师 关于Hadoop的介绍来自:http://www.cnblo ...
- 在报表中给session赋值实现报表间参数共享
1. 问题描述 在报表开发工具FineReport中,若有几张不同的报表,每张报表都有一个共同的项可以选择,比如日期时间.我们希望选择了第一张报表的时间之后,其他报表的默认时间都变为第一张报表选择的时 ...
- ARM学习篇 SDRAM理解
1.SDRAM单管存储单元 SDRAM单管电路图 C记忆单元 T控制门管 Z字线 W位线 注:图示为N沟道耗尽型MOS管 写入:Z加高电平,MOS导通,W状态决定了电容C的状态 读出:Z加高电平,MO ...
- Centos7 更新pip和scipy
更新pip: pip install --upgrade pip 更新scipy包: pip install -upgrade scipy
- [No000034]知乎-长期接收碎片化知识有什么弊端?
你所接受的一切信息,构成了你的思维方式. 所以,长期接受碎片信息的后果,就是让你的思维变得狭隘,难以进行复杂的思考. 碎片信息通常具备这样的特征: •它们往往是一些事实的集合而非逻辑 •它们往往大量简 ...
- JS原型与原型链终极详解
一. 普通对象与函数对象 JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object ,Function 是JS自带的函数对象.下面举例说明 function f ...