加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 5 Window to a Wider World
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
Chi-square test
- Random sample or not / Good or bad
- $$H_0: \text{Good model}$$ $$H_A: \text{Not good model}$$
- Based on the expected proportion to calculate the expected values
- $\chi^2$ statistic is $$\chi^2=\sum{\frac{(o-e)^2}{e}}$$ where $o$ is observed values, $e$ is expected values.
- The degree of freedom is the number of categories minus one
- Follows approximately the $\chi^2$ distribution, we can calculate its P-value by using R function:
1-pchisq(chi, df)
- Independent or not
- $$H_0: \text{Independent}$$ $$H_A: \text{not Independent}$$
- Contingency table
- Under $H_0$, in each cell of the table $$\text{expected count}=\frac{\text{row total}\times\text{column total}}{\text{grand total}}$$ That is, $P(A\cap B)=P(A)\cdot P(B)$ under the independent assumption.
- $\chi^2$ statistic is $$\chi^2=\sum{\frac{(o-e)^2}{e}}$$ where $o$ is observed values, $e$ is expected values.
- The degree of freedom is $(\text{row}-1)\times(\text{column}-1)$
- Follows approximately the $\chi^2$ distribution, we can calculate its P-value by using R function:
1-pchisq(chi, df)
ADDITIONAL PRACTICE PROBLEMS FOR WEEK 5
The population is all patients at a large system of hospitals; each sampled patient was classified by the type of room he/she was in, and his/her level of satisfaction with the care received. The question is whether type of room is independent of level of satisfaction.

1. What are the null and alternative hypotheses?
2. Under the null, what is the estimated expected number of patients in the "shared room, somewhat satisfied" cell?
3. Degrees of freedom = ( )
4. The chi-square statistic is about 13.8. Roughly what is the P-value, and what is the conclusion of the test?
Solution
1. Null: The two variables are independent; Alternative: The two variables are not independent.
2. We need to expand the original table:

Thus the estimated expected number of patients in the shared room, somewhat satisfied is $$784\times\frac{322}{784}\times\frac{255}{784}=104.7321$$
3. Degree of freedom is $(3-1)\times(3-1)=4$
4. P-value is 0.007961505 which is smaller than 0.05, so we reject $H_0$. That is, the conclusion is the two variables are not independent. R code:
1 - pchisq(13.8, 4)
[1] 0.007961505
UNGRADED EXERCISE SET A PROBLEM 1
According to a genetics model, plants of a particular species occur in the categories A, B, C, and D, in the ratio 9:3:3:1. The categories of different plants are mutually independent. At a lab that grows these plants, 218 are in Category A, 69 in Category B, 84 in Category C, and 29 in Category D. Does the model look good? Follow the steps in Problems 1A-1F.
1A The null hypothesis is:
a. The model is good.
b. The model isn't good.
c. Too many of the plants are in Category C.
d. The proportion of plants in Category A is expected to be 9/16; the difference in the sample is due to chance.
1B The alternative hypothesis is:
a. The model is good.
b. The model isn't good.
c. Too many of the plants are in Category C.
d. The proportion of plants in Category A is expected to be 9/16; the difference in the sample is due to chance.
1C Under the null, the expected number of plants in Category D is( ).
1D The chi-square statistic is closest to
a. 1 b. 1.5 c. 2 d. 2.5 e. 3 f. 3.5 g. 4 h. 4.5
1E Degrees of freedom = ( ).
1F Based on this test, does the model look good? Yes No
Solution
1A) The null hypothesis is "the model is good". (a) is correct.
1B) The alternative hypothesis is "the model is not good". (b) is correct.
1C) The expected number of plants in Category D is $$(218+69+84+29)\times\frac{1}{9+3+3+1}=25$$
1D) (d) is correct. We can use the following table

R code:
o = c(218, 69, 84, 29)
e = c(225, 75, 75, 25)
chi = sum((o - e)^2 / e); chi
[1] 2.417778
1E) Degree of freedom is $4-1=3$.
1F) P-value is 0.4903339 which is larger than 0.05, so we reject $H_A$. The conclusion is "the model is good". R code:
1 - pchisq(chi, 3)
[1] 0.4903339
PROBLEM 2
A simple random sample of cars in a city was categorized according to fuel type and place of manufacture.

Are place of manufacture and fuel type independent? Follow the steps in Problems 2A-2D.
2A If the two variables were independent, the chance that a sampled car is a domestic gasoline fueled car would be estimated to be about
0.0362 0.0499 0.2775 0.3820 0.5
2B If the two variables were independent, the expected number of foreign gas/electric hybrids would be estimated to be ( ). (Please keep at least two decimal places; by now you should understand why you should not round off to an integer.)
2C Degrees of freedom =( )
1 2 3 4
2D The chi-square statistic is 0.6716. The test therefore concludes that the two variables are independent not independent
Solution
2A) Expand the table:

If the two variables were independent, then $$P(\text{domestic gasoline})=P(\text{domestic})\cdot P(\text{gasoline})=\frac{215}{511}\times\frac{337}{511}=0.2774767\doteq 0.2775$$
2B) If the two variables were independent, then $$511\times P(\text{foreign gasoline/electricity})=511\times\frac{296}{511}\times\frac{130}{511}=75.30333$$
2C) Degree of freedom is $(2-1)\times(3-1)=2$.
2D) The P-value is 0.714766 which is larger than 0.05, so we reject $H_A$. That is, the conclusion is independent. R code:
1 - pchisq(0.6716, 2)
[1] 0.714766
We can calculate $\chi^2$ statistic by using R built-in function
chisq.test()
data = matrix(c(146, 18, 51, 191, 26, 79), ncol = 2)
chisq.test(data) Pearson's Chi-squared test data: data
X-squared = 0.6716, df = 2, p-value = 0.7148
加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 5 Window to a Wider World的更多相关文章
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 4 Dependent Samples
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 3 One-sample and two-sample tests
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- Asp.Net Core-几行代码解决Razor中的嵌套if语句
MVC开发中,经常会遇到在razor中插入简单的逻辑判断. @if (clientManager.IsAdmin) { if (!Model.Topic.Top) { <a asp-action ...
- .net破解二(修改dll)
多谢大家支持! 昨天说了一下反编译与剥壳(.net破解一(反编译,反混淆-剥壳,工具推荐)),今天就来修改修改dll,为了方便,我自己写一个简单程序用来测试 代码如下: 一个 ConsoleAppli ...
- How to create a batch of VMs with PowerShell
Foreword When we do some test that need several VMs, we can use PowerShell script or CmdLets to impl ...
- NPOI2.0学习(一)
引用空间 using NPOI.HSSF.UserModel; using NPOI.SS.UserModel; 创建工作簿(workbook)和sheet HSSFWorkbook wk = new ...
- 离散系统频响特性函数freqz()
MATLAB提供了专门用于求离散系统频响特性的函数freqz(),调用freqz()的格式有以下两种: l [H,w]=freqz(B,A,N) B和A分别为离散系统的系统函数分子.分母 ...
- vim 插件管理
1 进入自己的vim mkdir ./bundle/vundle 2 在vimrc同级中执行 git clone https://github.com/gmarik/vundle.git ./bund ...
- ElasticSearch入门系列(三)文档,索引,搜索和聚合
一.文档 在实际使用中的对象往往拥有复杂的数据结构 Elasticsearch是面向文档的,这意味着他可以存储整个对象或文档,然而他不仅仅是存储,还会索引每个文档的内容使之可以被搜索,在Elastic ...
- HTML5基础知识(1)--上标和下标文本
1.上标文本标签:<sup>/<sup> 2.下标文本标签:<sub></sub> 3.案例代码 <!doctype html> <h ...
- 模板题 codevs 1993 草地排水 想学习的请看链接
不能再水的题了. Dinic算法,比EK更快. 想要学习请看链接 https://comzyh.com/blog/archives/568/ 并附上我的模板(其实和comzyh大神的一样) #in ...
- php COOKIE和SESSION的一些理解
web服务器是基于http协议的,而http协议是无状态的,导致任意两个请求之间没有联系.但是我们登录网站后,它却能记住我们的身份,这个过程中一定使用了某个标识来区别我们的身份.对于简单数据传输的我们 ...