PDF version

PMF

Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are observing this sequence until a predefined number $r$ of failures has occurred. Then the random number of successes we have seen, $X$, will have the negative binomial (or Pascal) distribution: $$f(x; r, p) = \Pr(X=x) = {x + r-1\choose x}p^{x}(1-p)^{r}$$ for $x = 0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x =0}^{\infty}P(X = x) &= \sum_{x= 0}^{\infty} {x + r-1\choose x}p^{x}(1-p)^{r}\\ &= (1-p)^{r}\sum_{x=0}^{\infty} (-1)^{x}{-r\choose x}p^{x}\;\;\quad\quad (\mbox{identity}\ (-1)^{x}{-r\choose x}= {x+r-1\choose x})\\ &= (1-p)^r(1-p)^{-r}\;\;\quad\quad\quad\quad\quad\quad (\mbox{binomial theorem})\\ &= 1 \end{align*} $$ Using the identity $(-1)^{x}{-r\choose x}= {x+r-1\choose x}$: $$ \begin{align*} {x+r-1\choose x} &= {(x+r-1)!\over x!(r-1)!}\\ &= {(x+r-1)(x+r-2) \cdots r\over x!}\\ &= (-1)^{x}{(-r-(x-1))(-r-(x-2))\cdots(-r)\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))(-r-x)!\over x!(-r-x)!}\\ &=(-1)^{x}{-r\choose x} \end{align*} $$

Mean

The expected value is $$\mu = E[X] = {rp\over 1-p}$$

Proof:

$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xf(x; r, p)\\ &= \sum_{x=0}^{\infty}x{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}r{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad \mbox{setting}\ y= x-1\\ &= {rp\over 1-p} \end{align*} $$ where the last summation follows $Y\sim\mbox{NB}(r+1; p)$.

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {rp\over(1-p)^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2f(x; r, p)\\ &= \sum_{x=0}^{\infty}x^2{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}x{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}rx{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}x{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}(y+1){y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad (\mbox{setting}\ y= x-1)\\ &= {rp\over 1-p}\left(\sum_{y=0}^{\infty}y{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}+\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1} \right)\\ &= {rp\over 1-p}\left({(r+1)p\over 1-p} + 1\right)\quad\quad\quad\quad\quad\quad(Y\sim\mbox{NB}(r+1; p),\ E[Y] = {(r+1)p\over1-p})\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p} \end{align*} $$ Thus the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p}- \left({rp\over 1-p}\right)^2\\ &= {rp\over 1-p}\left({rp+1\over 1-p} - {rp\over 1-p}\right)\\ &= {rp\over(1-p)^2} \end{align*} $$

Examples

1. Find the expected value and the variance of the number of times one must throw a die until the outcome 1 has occurred 4 times.

Solution:

Let $X$ be the number of times and $Y$ be the number of success in the trials. Obviously, we have $X = Y+4$. Then the problem can be rewritten as ``the expected value and the variance of the number of times one must throw a die until the outcome 1 has NOT occurred 4 times''. That is, $r = 4$, $p = {5\over 6}$ and $Y\sim\mbox{NB}(r; p)$. Thus $$E[X] = E[Y+4]= E[Y] + 4 = {rp\over 1-p}+4 = 24$$ $$\mbox{Var}(X) = \mbox{Var}(Y+4) = \mbox{Var}(Y) = {rp\over(1-p)^2}= 120$$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Chen, H. Advanced Statistical Inference. Class Notes. PDF

基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  2. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  3. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  4. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  5. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  6. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  7. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. ReactNative真机运行运行

    注意在iOS设备上运行React Native应用需要一个Apple Developer account并且把你的设备注册为测试设备.本向导只包含React Native相关的主题. 译注:从XCod ...

  2. java中String、StringBuffer、StringBuilder的区别

    java中String.StringBuffer.StringBuilder是编程中经常使用的字符串类,他们之间的区别也是经常在面试中会问到的问题.现在总结一下,看看他们的不同与相同. 1.可变与不可 ...

  3. PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)

    主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...

  4. Theano2.1.10-基础知识之循环

    来自:http://deeplearning.net/software/theano/tutorial/loop.html loop 一.Scan 一个递归的通常的形式,可以用来作为循环语句. 约间和 ...

  5. [MCSM]伪随机数和伪随机数生成器

    1. 几个问题 为什么需要随机数? 伪随机数伪在哪里? 为何要采用伪随机数代替随机数?这种代替是否有不利影响? 如何产生(伪)随机数? 以下内容将围绕这几个问题依次说明. 2. 参考 http://e ...

  6. spring boot/cloud 应用监控

    应用的监控功能,对于分布式系统非常重要.如果把分布式系统比作整个社会系统.那么各个服务对应社会中具体服务机构,比如银行.学校.超市等,那么监控就类似于警察局和医院,所以其重要性显而易见.这里说的,监控 ...

  7. JVM内存管理------JAVA语言的内存管理概述

    引言 内存管理一直是JAVA语言自豪与骄傲的资本,它让JAVA程序员基本上可以彻底忽略与内存管理相关的细节,只专注于业务逻辑.不过世界上不存在十全十美的好事,在带来了便利的同时,也因此引入了很多令人抓 ...

  8. 如果在敲代码的时候eclipse不弹出提示,怎么办?

    非常弱智的操作,我们曾经在输入System.out.println("content");的时候,当我们输入了"."之后,在输入错误,此时我们再回退至" ...

  9. Spring学习进阶(二)Spring IoC

    在使用Spring所提供的各种丰富而神奇的功能之前,必须在Spring IoC容器中装配好Bean,并建立Bean与Bean之间的关联关系.控制反转(Inverser of Control ioc)是 ...

  10. 【Alpha版本】冲刺阶段——Day 4

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...