基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PMF
Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are observing this sequence until a predefined number $r$ of failures has occurred. Then the random number of successes we have seen, $X$, will have the negative binomial (or Pascal) distribution: $$f(x; r, p) = \Pr(X=x) = {x + r-1\choose x}p^{x}(1-p)^{r}$$ for $x = 0, 1, 2, \cdots$.
Proof:
$$ \begin{align*} \sum_{x =0}^{\infty}P(X = x) &= \sum_{x= 0}^{\infty} {x + r-1\choose x}p^{x}(1-p)^{r}\\ &= (1-p)^{r}\sum_{x=0}^{\infty} (-1)^{x}{-r\choose x}p^{x}\;\;\quad\quad (\mbox{identity}\ (-1)^{x}{-r\choose x}= {x+r-1\choose x})\\ &= (1-p)^r(1-p)^{-r}\;\;\quad\quad\quad\quad\quad\quad (\mbox{binomial theorem})\\ &= 1 \end{align*} $$ Using the identity $(-1)^{x}{-r\choose x}= {x+r-1\choose x}$: $$ \begin{align*} {x+r-1\choose x} &= {(x+r-1)!\over x!(r-1)!}\\ &= {(x+r-1)(x+r-2) \cdots r\over x!}\\ &= (-1)^{x}{(-r-(x-1))(-r-(x-2))\cdots(-r)\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))(-r-x)!\over x!(-r-x)!}\\ &=(-1)^{x}{-r\choose x} \end{align*} $$
Mean
The expected value is $$\mu = E[X] = {rp\over 1-p}$$
Proof:
$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xf(x; r, p)\\ &= \sum_{x=0}^{\infty}x{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}r{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad \mbox{setting}\ y= x-1\\ &= {rp\over 1-p} \end{align*} $$ where the last summation follows $Y\sim\mbox{NB}(r+1; p)$.
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {rp\over(1-p)^2}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2f(x; r, p)\\ &= \sum_{x=0}^{\infty}x^2{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}x{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}rx{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}x{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}(y+1){y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad (\mbox{setting}\ y= x-1)\\ &= {rp\over 1-p}\left(\sum_{y=0}^{\infty}y{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}+\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1} \right)\\ &= {rp\over 1-p}\left({(r+1)p\over 1-p} + 1\right)\quad\quad\quad\quad\quad\quad(Y\sim\mbox{NB}(r+1; p),\ E[Y] = {(r+1)p\over1-p})\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p} \end{align*} $$ Thus the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p}- \left({rp\over 1-p}\right)^2\\ &= {rp\over 1-p}\left({rp+1\over 1-p} - {rp\over 1-p}\right)\\ &= {rp\over(1-p)^2} \end{align*} $$
Examples
1. Find the expected value and the variance of the number of times one must throw a die until the outcome 1 has occurred 4 times.
Solution:
Let $X$ be the number of times and $Y$ be the number of success in the trials. Obviously, we have $X = Y+4$. Then the problem can be rewritten as ``the expected value and the variance of the number of times one must throw a die until the outcome 1 has NOT occurred 4 times''. That is, $r = 4$, $p = {5\over 6}$ and $Y\sim\mbox{NB}(r; p)$. Thus $$E[X] = E[Y+4]= E[Y] + 4 = {rp\over 1-p}+4 = 24$$ $$\mbox{Var}(X) = \mbox{Var}(Y+4) = \mbox{Var}(Y) = {rp\over(1-p)^2}= 120$$
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
- Chen, H. Advanced Statistical Inference. Class Notes. PDF
基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- Pechkin:html -> pdf 利器
Pechkin 是GitHub上的一个开源项目,可方便将html转化成pdf文档,使用也很方便,下面是winform项目中的示例代码: using System; using System.Diagn ...
- ImageMagick常用指令详解
Imagemagick常用指令 (ImageMagick--蓝天白云) (ImageMagick官网) (其他比较有价值的IM参考) (图片自动旋转的前端实现方案) convert 转换图像格式和大小 ...
- express:webpack dev-server中如何将对后端的http请求转到https的后端服务器中?
在上一篇文章(Webpack系列:在Webpack+Vue开发中如何调用tomcat的后端服务器的接口?)我们介绍了如何将对于webpack-dev-server的数据请求转发到后端服务器上,这在大部 ...
- 直流调速系统Modelica基本模型
为了便于在OpenModelica进行仿真,形成一个完整的仿真模型,没有使用第三方的库,参照了DrModelica的例程,按照Modelica库的开源模型定义了所用的基本元件模型. 首先给出一些基本类 ...
- es6+移动轮播插件
前言:之前赶项目,都是直接用框架,对于touch事件是模拟两可,趁着有心情,用es6写一个原生移动轮播插件. 用了es6的新特性,确实挺爽的,说到es6,就不得不说到babel,博主已经码好了,直接用 ...
- Http概述(一)
Http使用的是可靠的数据传输协议,因此即使数据来自地球的另一端,也能够确保数据在传输过程中不会被损坏或产生混乱. 这样用户在访问信息时就不用担心其完整性了. web服务端与服务器是如何通信的 Web ...
- 将DBF文件导入Sqlserver数据库
项目中的问题:用户选择N个dbf文件导入sql2005数据库,由于每年dbf表结构都在变化,所以在sql2005中根本就不存在,需要每年根据dbf的结构自动建表.(文章来自http://blog.cs ...
- 如何解决Windows 10系统下设备的声音问题
如何解决Windows 10系统下设备的声音问题? 请阅读下面的说明来解决Windows 10设备上的声音问题. 1. 检查设备管理器 打开开始菜单,键入设备管理器, 从出现的结果中选择并打开它. 在 ...
- 关于浏览器URL中出现会话验证字符说明
服务器安装了网站安全狗,访问网站的时候会显示一串类似iissafedogccsision=7Z86v5H5z这样的会话验证信息. 安全狗官方解释 出现该字符的主要原因是用户开启了网站安全狗的CC防护的 ...
- Form表单提交的简要方式
<html> <head> <meta name="viewport" content="width=device-width" ...