Part 1: Moments

Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is

\[\mu_{n}^{'} = EX^n.\]

The nth central moment of $X$, $\mu_n$, is

\[ \mu_n = E(X-\mu)^n,\]

where $\mu=\mu_{1}^{'}=EX$.

Definition 2 The variance of a random variable $X$ $= Var X = E(X-EX)^2$.

The standard deviation of $X$ $=  \sqrt{Var X}$.

Part 2: Moment Generating Function (mgf)

The mgf can be used to generate moments. In practice, it is easier to compute moments directly than to use the mgf. However, the main use of the mgf is to help in characterizing a distribution.

Defintion 3 Let $X$ be a random variable with cdf $F_X$. The moment generating function (mgf) of $X$, denoted by $M_X(t)$, is

\[M_{X}(t) = E e^{tX}, \]

provided that the expectation exists for $t$ in some neighborhood of $0$. If the expectation does not exist in a neighborhood of $0$, we say that the moment generating function does not exist.

Theorem 4 (mgf generates moments)

If $X$ has mgf $M_X(t)$, then

\[E X^{n} = M_{X}^{(n)}(0),\]

where we define

\[M_{X}^{(n)}(0) = \frac{d^n}{d t^{n}}M_X(t) |_{t=0}.\]

That is, the nth moment is equal to the nth derivative of $M_X(t)$ evaluated at $t=0$.

Remark 5 If the mgf exists, it characterizes an infinite set of moments. However, the infinite set of moments does not uniquely determine a distribution function. If we pose some condition on the random variable, say it has bounded support, then it is true that the inifinite set of moments uniquely determine a distribution function.

Remark 6 Existence of all moments is not equivalent to existence of the moment generating function. Actually, if the mgf exists in a neighborhood of 0, then the distribution is uniquely determined. An analogue is the analytic function in a neighborhood and the existence of derivatives of all orders.

Theorem 7 

Let $F_X(t)$ and $F_Y(t)$ be two cdfs all of whose moments exist.

a. If $X$ and $Y$ have bounded support, then $F_X(u)=F_Y(u)$ for all $u$ if and only if $E X^{r} = E Y^{r}$ for all integers $r = 0, 1, 2, \cdots$

b. If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all $t$ in some neighborhood of $0$, then $F_X(u) = F_Y(u)$ for all u.

Theorem 8 

Suppose $\{X_i\}, \quad i=1,2,3,\cdots$ is a sequence of random variables, each with mgf $M_{X_i}(t)$.

Furthermore, suppose that

\[\lim_{i\to \infty}M_{X_{i}}(t) = M_{X}(t), \]

for all $t$ in a neighborhood of 0, and $M_X(t)$  is an mgf.

Then there is a unique cdf $F_X$ whose moments are determined by $M_X(t)$ and , for all $x$ where $F_X(t)$ is continuous, we have

\[\lim_{i\to \infty}F_{X_{i}}(x) = F_{X}(x).\]

That is, convergence, for $|t|<h$, of mgfs to an mgf implies convergence of cdfs.

读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)的更多相关文章

  1. TJI读书笔记15-持有对象

    TJI读书笔记15-持有对象 总览 类型安全和泛型 Collection接口 添加元素 List 迭代器 LinkedList 栈 Set Map Queue Collection和Iterator ...

  2. 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(下)

    <Troubleshooting SQL Server>读书笔记-CPU使用率过高(下) 第三章 High CPU Utilization. CPU使用率过高的常见原因 查询优化器会尽量从 ...

  3. 《Mastering Opencv ...读书笔记系列》车牌识别(II)

    http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(I ...

  4. 《Java编程思想》读书笔记(二)

    三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第一章到第十章的内容,这一次记录的是第 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. 在windows7下安装CentOS

    需要用到的软件 EasyBCD 设置索引菜单 PA5.2_Portable 分区助手 WinGrub 查看硬盘代号 1.使用分区助手,腾出至少4GB的空间,并格式化为fat32格式,将CentOS的I ...

  2. ASP.NET中如何读取和写入注册表

    直接给源码: 读取注册表内容: RegistryKey regkey=Registry.LocalMachine.OpenSubKey(@"SOFTWARE\Microsoft\Window ...

  3. repeater单双行颜色不同,gridview repeater DataList 鼠标经过改变背景颜色

    1.gridview 双击GridView的OnRowDataBound事件: 在后台的GridView1_RowDataBound()方法添加代码,最后代码如下所示: protected void  ...

  4. Struts2的流程(三)

    Struts的流程图如下(需要完全理解):

  5. Sqlserver2008和Oracle分页语句

    SqlServer 分页语句 select StuID ,StuNo,StuName,Age,Sex, ClassName ClassName from (select *, row_number() ...

  6. Count Complete Tree Nodes || LeetCode1

    /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * s ...

  7. iOS多线程GCD

    Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法. dispatch queue分成以下三种: 1)运行在主线程的Main queue,通过dispat ...

  8. kafka 命令行操作

    1.创建主题(topic) bin/kafka-topics.sh --create --zookeeper m6:2181 --replication-factor 1 --partitions 1 ...

  9. mysqldump database table

    一)在同一个数据库服务器上面进行数据表间的数据导入导出: 1. 如果表tb1和tb2的结构是完全一样的,则使用以下的命令就可以将表tb1中的数据导入到表tb2中: insert into db2.tb ...

  10. Ruby(Selenium / Rspec)在Windows 8_64上安装步骤

    1.首先需要下载RubyInstaller.exe程序(下载地址随便都能找到). 如:rubyinstaller-2.2.2-x64.exe 安装好Ruby后,需要更新Gems gem update ...