Part 1: Moments

Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is

\[\mu_{n}^{'} = EX^n.\]

The nth central moment of $X$, $\mu_n$, is

\[ \mu_n = E(X-\mu)^n,\]

where $\mu=\mu_{1}^{'}=EX$.

Definition 2 The variance of a random variable $X$ $= Var X = E(X-EX)^2$.

The standard deviation of $X$ $=  \sqrt{Var X}$.

Part 2: Moment Generating Function (mgf)

The mgf can be used to generate moments. In practice, it is easier to compute moments directly than to use the mgf. However, the main use of the mgf is to help in characterizing a distribution.

Defintion 3 Let $X$ be a random variable with cdf $F_X$. The moment generating function (mgf) of $X$, denoted by $M_X(t)$, is

\[M_{X}(t) = E e^{tX}, \]

provided that the expectation exists for $t$ in some neighborhood of $0$. If the expectation does not exist in a neighborhood of $0$, we say that the moment generating function does not exist.

Theorem 4 (mgf generates moments)

If $X$ has mgf $M_X(t)$, then

\[E X^{n} = M_{X}^{(n)}(0),\]

where we define

\[M_{X}^{(n)}(0) = \frac{d^n}{d t^{n}}M_X(t) |_{t=0}.\]

That is, the nth moment is equal to the nth derivative of $M_X(t)$ evaluated at $t=0$.

Remark 5 If the mgf exists, it characterizes an infinite set of moments. However, the infinite set of moments does not uniquely determine a distribution function. If we pose some condition on the random variable, say it has bounded support, then it is true that the inifinite set of moments uniquely determine a distribution function.

Remark 6 Existence of all moments is not equivalent to existence of the moment generating function. Actually, if the mgf exists in a neighborhood of 0, then the distribution is uniquely determined. An analogue is the analytic function in a neighborhood and the existence of derivatives of all orders.

Theorem 7 

Let $F_X(t)$ and $F_Y(t)$ be two cdfs all of whose moments exist.

a. If $X$ and $Y$ have bounded support, then $F_X(u)=F_Y(u)$ for all $u$ if and only if $E X^{r} = E Y^{r}$ for all integers $r = 0, 1, 2, \cdots$

b. If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all $t$ in some neighborhood of $0$, then $F_X(u) = F_Y(u)$ for all u.

Theorem 8 

Suppose $\{X_i\}, \quad i=1,2,3,\cdots$ is a sequence of random variables, each with mgf $M_{X_i}(t)$.

Furthermore, suppose that

\[\lim_{i\to \infty}M_{X_{i}}(t) = M_{X}(t), \]

for all $t$ in a neighborhood of 0, and $M_X(t)$  is an mgf.

Then there is a unique cdf $F_X$ whose moments are determined by $M_X(t)$ and , for all $x$ where $F_X(t)$ is continuous, we have

\[\lim_{i\to \infty}F_{X_{i}}(x) = F_{X}(x).\]

That is, convergence, for $|t|<h$, of mgfs to an mgf implies convergence of cdfs.

读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)的更多相关文章

  1. TJI读书笔记15-持有对象

    TJI读书笔记15-持有对象 总览 类型安全和泛型 Collection接口 添加元素 List 迭代器 LinkedList 栈 Set Map Queue Collection和Iterator ...

  2. 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(下)

    <Troubleshooting SQL Server>读书笔记-CPU使用率过高(下) 第三章 High CPU Utilization. CPU使用率过高的常见原因 查询优化器会尽量从 ...

  3. 《Mastering Opencv ...读书笔记系列》车牌识别(II)

    http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(I ...

  4. 《Java编程思想》读书笔记(二)

    三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第一章到第十章的内容,这一次记录的是第 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. DG配置实验

    1.配置主库环境 2.为备库创建备份文件 3.启动主备库验证配置 4.DG测试 5.DG主备库切换 6.DG主备库第二次切换

  2. java项目开发的一些准备工作

    做项目有一段时间了,每次接手一个新项目都要在开发前做些准备工作,方便开发. 有些东西在配置的时候经常会忘记,所有整理一份,方便以后查阅! 1.安装JDK及搭建环境,安装tomcat及搭建环境,这些一般 ...

  3. [基础常识]阿里云ecs从购买到环境搭建和建站!!(phpstudy一件包)

    首先如何购买ECS?发现有些人购买5G硬盘,我个人认为买硬盘应该购买20以上!这样以后好处理!   进入http://www.aliyun.com/product/ecs/?spm=5176.7189 ...

  4. Android课程---用进度条改变图片透明度

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  5. EmguCV 轮廓分析函数汇总

    一.cvApproxPoly 使用多边形逼近一个轮廓,使得顶点数目变少.算法先从轮廓选择2个最远的点,然后将2个连成一个线段,然后再查找轮廓上到线段距离最远的点,添加到逼近后的新轮廓.算法反复迭代,不 ...

  6. ModelAndView学习整理

    ModelAndView mav = new ModelAndView("/media/play-video");是什么意思 1.这是SpringMVC里面的问题啊!2.这叫返回一 ...

  7. PHP多台服务器跨域SESSION共享

    网站业务规模和访问量的逐步发展,原本由单台服务器.单个域名的迷你网站架构已经无法满足发展需要. 此时我们可能会购买更多服务器,并且启用多个二级子域名以频道化的方式,根据业务功能将网站分布部署在独立的服 ...

  8. 如何获取imageView中当前内容的相关信息并比较?

    public class MainActivity extends Activity implements OnClickListener{ private Button button; privat ...

  9. SQLSERVER20008 完整备份和差异备份

    --差异备份 DIFFERENTIAL ) ),)+'.bak' BACKUP DATABASE [testbackup] TO DISK=@name WITH DIFFERENTIAL, NOFOR ...

  10. Python基础、文件处理

    一.概述 Python中操作文件是通过file对象来处理的,步骤: 指定文件的路径.操作的模式 对文件进行操作,读或写操作 关闭文件对象 f = open( '文件路径','访问模式') # 打开文件 ...