读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)
Part 1: Moments
Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is
\[\mu_{n}^{'} = EX^n.\]
The nth central moment of $X$, $\mu_n$, is
\[ \mu_n = E(X-\mu)^n,\]
where $\mu=\mu_{1}^{'}=EX$.
Definition 2 The variance of a random variable $X$ $= Var X = E(X-EX)^2$.
The standard deviation of $X$ $= \sqrt{Var X}$.
Part 2: Moment Generating Function (mgf)
The mgf can be used to generate moments. In practice, it is easier to compute moments directly than to use the mgf. However, the main use of the mgf is to help in characterizing a distribution.
Defintion 3 Let $X$ be a random variable with cdf $F_X$. The moment generating function (mgf) of $X$, denoted by $M_X(t)$, is
\[M_{X}(t) = E e^{tX}, \]
provided that the expectation exists for $t$ in some neighborhood of $0$. If the expectation does not exist in a neighborhood of $0$, we say that the moment generating function does not exist.
Theorem 4 (mgf generates moments)
If $X$ has mgf $M_X(t)$, then
\[E X^{n} = M_{X}^{(n)}(0),\]
where we define
\[M_{X}^{(n)}(0) = \frac{d^n}{d t^{n}}M_X(t) |_{t=0}.\]
That is, the nth moment is equal to the nth derivative of $M_X(t)$ evaluated at $t=0$.
Remark 5 If the mgf exists, it characterizes an infinite set of moments. However, the infinite set of moments does not uniquely determine a distribution function. If we pose some condition on the random variable, say it has bounded support, then it is true that the inifinite set of moments uniquely determine a distribution function.
Remark 6 Existence of all moments is not equivalent to existence of the moment generating function. Actually, if the mgf exists in a neighborhood of 0, then the distribution is uniquely determined. An analogue is the analytic function in a neighborhood and the existence of derivatives of all orders.
Theorem 7
Let $F_X(t)$ and $F_Y(t)$ be two cdfs all of whose moments exist.
a. If $X$ and $Y$ have bounded support, then $F_X(u)=F_Y(u)$ for all $u$ if and only if $E X^{r} = E Y^{r}$ for all integers $r = 0, 1, 2, \cdots$
b. If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all $t$ in some neighborhood of $0$, then $F_X(u) = F_Y(u)$ for all u.
Theorem 8
Suppose $\{X_i\}, \quad i=1,2,3,\cdots$ is a sequence of random variables, each with mgf $M_{X_i}(t)$.
Furthermore, suppose that
\[\lim_{i\to \infty}M_{X_{i}}(t) = M_{X}(t), \]
for all $t$ in a neighborhood of 0, and $M_X(t)$ is an mgf.
Then there is a unique cdf $F_X$ whose moments are determined by $M_X(t)$ and , for all $x$ where $F_X(t)$ is continuous, we have
\[\lim_{i\to \infty}F_{X_{i}}(x) = F_{X}(x).\]
That is, convergence, for $|t|<h$, of mgfs to an mgf implies convergence of cdfs.
读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)的更多相关文章
- TJI读书笔记15-持有对象
TJI读书笔记15-持有对象 总览 类型安全和泛型 Collection接口 添加元素 List 迭代器 LinkedList 栈 Set Map Queue Collection和Iterator ...
- 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(下)
<Troubleshooting SQL Server>读书笔记-CPU使用率过高(下) 第三章 High CPU Utilization. CPU使用率过高的常见原因 查询优化器会尽量从 ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(II)
http://blog.csdn.net/jinshengtao/article/details/17954427 <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《Java编程思想》读书笔记(二)
三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第一章到第十章的内容,这一次记录的是第 ...
- 读书笔记汇总 - SQL必知必会(第4版)
本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...
- 读书笔记--SQL必知必会18--视图
读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...
- 《C#本质论》读书笔记(18)多线程处理
.NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...
- C#温故知新:《C#图解教程》读书笔记系列
一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...
- C#刨根究底:《你必须知道的.NET》读书笔记系列
一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...
随机推荐
- sql实现对多个条件分组排序方法和区别
转自: http://blog.csdn.net/winer2008/article/details/4283539 rank,dense_rank,row_number区别 一:语法(用法): ...
- jquery 温故而知新 animate动画的一些坑
注意1,只有hover事件后才能紧跟着第二个回调函数(mouseleave),尽量还是不使用mouseover事件了 注意2,.stop(false,true); 结束动画,在动画队列中删除自己,并且 ...
- EmguCV 阈值化
一.public static double cvThreshold( IntPtr src, IntPtr dst, double threshold, double maxValue, //Max ...
- INSTRUCTION EXECUTION CHARACTERISTICS
Characteristics of Some CISCs, RISCs, and Superscalar Processors One of the most visible forms of ev ...
- 一个编程小白,如何入门APP软件开发领域?
近些年,互联网创业火得不得了!一时间,满世界都在招做App软件开发的专业人员.从大众角度来看,学编程,写代码,是一件非常困难的事情.但是,App开发人员的工资那么诱人,让很多小白也跃跃欲试想学一下.那 ...
- JS阻止链接跳转代码
刷新后focus在第一个标签 onload="$('#input_email').focus(); " $(document).ready(function(){ $(" ...
- MVC控制器常用方法返回类型
控制器的常用方法 using System; using System.Collections.Generic; using System.Linq; using System.Web; using ...
- AjaxFileUpload 方法与原理分析
AjaxFileUpload需求 传统的form表单方式上传文件, 必然会刷新整个页面. 那么在不刷新界面的情况下实现文件的上传呢? 在 HTML4下, 聪明的程序员们发明了 ajax file u ...
- DuiLib学习bug整理——某些png不能显示
今天下午遇到用ps导出的png显示不出来的情况.而从其他来源的png有的可以显示.到群里问了下也有人遇到过,但是都没想明白具体原因.后来经人指点说png保存时存在深度位不同.最后经过测试 8位深度.3 ...
- Velocity(6)——#if指令
下面是#If指令的一个简单而完整的示例: #if ($foo < 10) Go North #elseif ($foo == 10) Go East #else Go West#end 不能漏掉 ...