【BZOJ】3240: [Noi2013]矩阵游戏
题意
给出\(n, m(1 \le n, m \le 10^{1000000})\),求\(f(n, m) \ \mod \ 10^9+7\)
$$
\begin{cases}
f(1, 1) = 1 \\
f(i, 1) = cf(i-1, m) + d \\
f(i, j) = af(i, j-1) + b & (j \neq 1)
\end{cases}
$$
其中\(1 \le a, b, c, d \le 10^9\)
分析
对于递推式\(f_i = af_{i-1} + b\)
当\(a=1\)时通项为\(f_n = f_1 + (n-1) b\)
当\(a \neq 1\)时通项为\(f_n = a^{n-1} f_1 + \frac{b(a^{n-1} - 1)}{a-1}\)
那么根据上式可以求出对应的系数
\]
然后又得到
\]
就可以推出\(f(n, 1)\),最后再逆推回\(f(n, m)\)即可。
题解
快速幂部分,可以根据欧拉定理\(a^{\varphi(p)} \equiv 1 \pmod{p}, (a, p)=1\)可以知道\(a^{10^9+6} \equiv 1 \pmod{10^9+7}\)
所以我们可以在读入的时候就对\(n, m\)模\(10^9+6\)然后再快速幂。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mo=1e9+7;
int ipow(int a, int b) {
if(a>=mo) {
a%=mo;
}
int x=1;
for(; b; b>>=1, a=(ll)a*a%mo) {
if(b&1) {
x=(ll)x*a%mo;
}
}
return x;
}
void getint(int &n, int &nn) {
char c=getchar();
n=nn=0;
for(; c<'0'||c>'9'; c=getchar());
for(; c>='0'&&c<='9'; c=getchar()) {
n=((ll)n*10+c-'0')%mo;
nn=((ll)nn*10+c-'0')%(mo-1);
}
}
int main() {
int n, m, nn, mm, a, b, c, d, ans;
getint(n, nn);
getint(m, mm);
scanf("%d%d%d%d", &a, &b, &c, &d);
int k, j;
if(a==1) {
k=c;
j=((ll)c*(m-1+mo)%mo*b%mo+d)%mo;
}
else {
int p=ipow(a, mm-1+(mo-1));
k=(ll)c*p%mo;
j=((ll)b*c%mo*(1-p+mo)%mo*ipow(1-a+mo, mo-2)%mo+d)%mo;
}
if(k==1) {
ans=((ll)n*j%mo+1)%mo;
}
else {
int p=ipow(k, nn);
ans=((ll)j*ipow(1-k+mo, mo-2)%mo*(1-p+mo)%mo+p)%mo;
}
ans=(ans-d+mo)%mo;
ans=(ll)ans*ipow(c, mo-2)%mo;
printf("%d\n", ans);
return 0;
}
【BZOJ】3240: [Noi2013]矩阵游戏的更多相关文章
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- BZOJ 3240: [Noi2013]矩阵游戏
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1586 Solved: 698[Submit][Status ...
- BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 123 Solved: 73 [ Submit][ St ...
- BZOJ 3240 [Noi2013]矩阵游戏 ——费马小定理 快速幂
发现是一个快速幂,然而过不去. 怎么办呢? 1.十进制快速幂,可以用来练习卡时. 2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数. 然后就是分类讨论 ...
- (十进制高速幂+矩阵优化)BZOJ 3240 3240: [Noi2013]矩阵游戏
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3240 3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec M ...
- 3240: [Noi2013]矩阵游戏
Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的 ...
- P1397 [NOI2013]矩阵游戏(递推)
P1397 [NOI2013]矩阵游戏 一波化式子,$f[1][m]=a^{m-1}+b\sum_{i=0}^{m-2}a^i$,用快速幂+逆元求等比数列可以做到$logm$ 设$v=a^{m-1}, ...
- bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1891 Solved: 919[Submit][Statu ...
- BZOJ 1059 [ZJOI2007]矩阵游戏
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2707 Solved: 1322[Submit][Stat ...
随机推荐
- SVM NG课件1
SVM NG课件1 2014年9月28日 16:39 一个二维空间点的示例 已使用 Microsoft OneNote 2013 创建.
- 微信支付:“当前页面的URL未注册”
最近在尝试着写微信支付方面的内容,今天下午的时候遇到了一个问题,也就是当前页面没有进行注册的问题. 在写好后台代码之后我在微信后台配置了测试授权目录和支付白名单,如下图所示,但是无论我如何进行测试总是 ...
- mysql5.7.11安装配置
1.下载安装包. mysql-5.7.11版本: http://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.11-winx64.zip 2.拷贝到任意盘: ...
- PHP+Nginx环境搭配
一.Nginx安装 nginx可以使用各平台的默认包来安装,本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好,这里默认你已经装好. u ...
- js 控制展开折叠 div html dom
js 控制展开折叠 div html dom <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" ...
- JQuery EasyUI validatebox(验证框)
JQuery EasyUI validatebox(验证框) http://www.easyui.info/archives/602.html
- 硬盘格式是MBR、GPT
装win7 64位要求硬盘格式是MBR 现在预装 Win8 的电脑大多是采用新版 UEFI 固件 + GPT 格式磁盘 GPT模式是针对整个硬盘的初始化而言,因此不存在某一个分区是GPT模式的说法.转 ...
- Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)
题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...
- 智能车学习(十三)——角度控制
一.手册代码以及图示 二.流程说明 1.角度计算函数说明 //===================================================================== ...
- UML九种图详解-外链
http://blog.csdn.net/fanxiaobin577328725/article/details/51591482