B2. Shave Beaver!
 

The Smart Beaver has recently designed and built an innovative nanotechnologic all-purpose beaver mass shaving machine, "Beavershave 5000". Beavershave 5000 can shave beavers by families! How does it work? Very easily!

There are n beavers, each of them has a unique id from 1 to n. Consider a permutation a1, a2, ..., an of n these beavers. Beavershave 5000 needs one session to shave beavers with ids from x to y (inclusive) if and only if there are such indices i1 < i2 < ... < ik, thatai1 = xai2 = x + 1, ..., aik - 1 = y - 1, aik = y. And that is really convenient. For example, it needs one session to shave a permutation of beavers 1, 2, 3, ..., n.

If we can't shave beavers from x to y in one session, then we can split these beavers into groups [x, p1], [p1 + 1, p2], ..., [pm + 1, y](x ≤ p1 < p2 < ... < pm < y), in such a way that the machine can shave beavers in each group in one session. But then Beavershave 5000 needs m + 1 working sessions to shave beavers from x to y.

All beavers are restless and they keep trying to swap. So if we consider the problem more formally, we can consider queries of two types:

  • what is the minimum number of sessions that Beavershave 5000 needs to shave beavers with ids from x to y, inclusive?
  • two beavers on positions x and y (the beavers ax and ay) swapped.

You can assume that any beaver can be shaved any number of times.

Input

The first line contains integer n — the total number of beavers, 2 ≤ n. The second line contains n space-separated integers — the initial beaver permutation.

The third line contains integer q — the number of queries, 1 ≤ q ≤ 105. The next q lines contain the queries. Each query i looks as pi xiyi, where pi is the query type (1 is to shave beavers from xi to yi, inclusive, 2 is to swap beavers on positions xi and yi). All queries meet the condition: 1 ≤ xi < yi ≤ n.

  • to get 30 points, you need to solve the problem with constraints: n ≤ 100 (subproblem B1);
  • to get 100 points, you need to solve the problem with constraints: n ≤ 3·105 (subproblems B1+B2).

Note that the number of queries q is limited 1 ≤ q ≤ 105 in both subproblem B1 and subproblem B2.

Output

For each query with pi = 1, print the minimum number of Beavershave 5000 sessions.

Examples
input
5
1 3 4 2 5
6
1 1 5
1 3 4
2 2 3
1 1 5
2 1 5
1 1 5
output
2
1
3
5

 题意:

  给你长度n的序列,m次询问

  1:x -> y 的花费  满足 每次 选择 以一个a值  能到大其右边任意位置 (即最长连续上升子序列)算一次路径,问从x值到达y值,需要几次

  2:x,y  交换a[x],a[y];

题解:

  假设x+1在 x的右边 那么此x的位置值为 1,即任意的区间求和

  有交换操作,线段树维护a[x],a[y]对序列的影响即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 3e5+, M = 2e5++, mod = 1e9+, inf = 0x3fffffff; int id[N],a[N],n,m,v[N*];
void update(int i,int ll,int rr,int x,int c) {
if(ll == rr) {
v[i] = c;
return ;
}
if(x <= mid) update(ls,ll,mid,x,c);
else update(rs,mid+,rr,x,c);
v[i] = v[ls] + v[rs];
}
int ask(int i,int ll,int rr,int x,int y) {
if(ll == x && y == rr) {
return v[i];
}
if(y <= mid) return ask(ls,ll,mid,x,y);
else if(x > mid) return ask(rs,mid+,rr,x,y);
else return ask(ls,ll,mid,x,mid) + ask(rs,mid+,rr,mid+,y);
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]),id[a[i]] = i;
for(int i = ; i < n; ++i) {
if(id[i] > id[i+]) update(,,n,i,);
}
scanf("%d",&m);
for(int i = ; i <= m; ++i) {
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op == ) {
printf("%d\n",ask(,,n,x,y-) + );
} else {
int tmp1 = a[x];
int tmp2 = a[y];
int tt = id[a[x]];
id[a[x]] = id[a[y]];
id[a[y]] = tt;
swap(a[x],a[y]);
if(tmp1+ <= n && id[tmp1] > id[tmp1+]) update(,,n,tmp1,);
if(tmp1- >= && id[tmp1-] < id[tmp1]) update(,,n,tmp1-,); if(tmp2+ <= n && id[tmp2] < id[tmp2+]) update(,,n,tmp2,);
if(tmp2- >= && id[tmp2-] > id[tmp2]) update(,,n,tmp2-,);
}
}
return ;
}

  

codeforce ABBYY Cup 3.0 - Finals (online version) B2. Shave Beaver! 线段树的更多相关文章

  1. ABBYY Cup 3.0 - Finals (online version)

    A 开个数组记录一下 #include <iostream> #include<cstdio> #include<cstring> #include<algo ...

  2. Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】

    传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...

  3. VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线+线段树

    题目链接: http://codeforces.com/problemset/problem/522/D D. Closest Equals time limit per test3 secondsm ...

  4. C.Fountains(Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)+线段树+RMQ)

    题目链接:http://codeforces.com/contest/799/problem/C 题目: 题意: 给你n种喷泉的价格和漂亮值,这n种喷泉题目指定用钻石或现金支付(分别用D和C表示),C ...

  5. Codeforces VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线线段树 求区间相同数的最小距离

    D. Closest Equals Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/prob ...

  6. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  7. composer install 遇到问题 Problem 1 - phpunit/phpunit 5.7.5 requires php ^5.6 || ^7.0 -> your PHP version (5.5.3 0) does not satisfy that requirement.

    $ composer install Loading composer repositories with package information Updating dependencies (inc ...

  8. Pycharm 中You are using pip version 10.0.1, however version 18.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command.

    今天运行程序的时候出现了: You are using pip version 10.0.1, however version 18.1 is available.You should conside ...

  9. pip install psutil出错-You are using pip version 10.0.1, however version 18.0 is available.

    今天想用python代替shell做运维相关的事,写代码都是在本机,调试在服务器上 C:\Users\0>pip install psutilRequirement already satisf ...

随机推荐

  1. 【leetcode】Search in Rotated Sorted Array

    Search in Rotated Sorted Array Suppose a sorted array is rotated at some pivot unknown to you before ...

  2. ffmpeg-20160520-git-bin

    ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 f ...

  3. js中apply方法的使用

    js中apply方法的使用   1.对象的继承,一般的做法是复制:Object.extend prototype.js的实现方式是: Object.extend = function(destinat ...

  4. tomcat bin 中startup.sh中的环境变量配置

    JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64 JRE_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64/jre P ...

  5. QL Server 实用脚本

    use MyFirstDB; -- 主要内容 -- SQL Server 实用脚本 -- 1.case语句 -- 2.子查询 -- 3.连接查询 -- 4.脚本变量与流程控制(选择与循环等) -- 5 ...

  6. LeetCode 459 Repeated Substring Pattern

    Problem: Given a non-empty string check if it can be constructed by taking a substring of it and app ...

  7. [Android Pro] Android 4.3 NotificationListenerService使用详解

    reference to : http://blog.csdn.net/yihongyuelan/article/details/40977323 概况 Android在4.3的版本中(即API 18 ...

  8. shell之数值运算

    Shell中声明变量默认是字符串, 要参与数值运算,可使用下面方式,简单,表示以数值方式.

  9. http协议之request

    一.请求的基本格式 请求的基本格式包括请求行,请求头,请求实体三部分.例如:GET /img/bd_logo1.png HTTP/1.1Accept: */*Referer: http://www.b ...

  10. 复制Informational constraints on LUW DB2 v105

    An informational constraint is a constraint attribute that can be used by the SQL compiler to improv ...