B2. Shave Beaver!
 

The Smart Beaver has recently designed and built an innovative nanotechnologic all-purpose beaver mass shaving machine, "Beavershave 5000". Beavershave 5000 can shave beavers by families! How does it work? Very easily!

There are n beavers, each of them has a unique id from 1 to n. Consider a permutation a1, a2, ..., an of n these beavers. Beavershave 5000 needs one session to shave beavers with ids from x to y (inclusive) if and only if there are such indices i1 < i2 < ... < ik, thatai1 = xai2 = x + 1, ..., aik - 1 = y - 1, aik = y. And that is really convenient. For example, it needs one session to shave a permutation of beavers 1, 2, 3, ..., n.

If we can't shave beavers from x to y in one session, then we can split these beavers into groups [x, p1], [p1 + 1, p2], ..., [pm + 1, y](x ≤ p1 < p2 < ... < pm < y), in such a way that the machine can shave beavers in each group in one session. But then Beavershave 5000 needs m + 1 working sessions to shave beavers from x to y.

All beavers are restless and they keep trying to swap. So if we consider the problem more formally, we can consider queries of two types:

  • what is the minimum number of sessions that Beavershave 5000 needs to shave beavers with ids from x to y, inclusive?
  • two beavers on positions x and y (the beavers ax and ay) swapped.

You can assume that any beaver can be shaved any number of times.

Input

The first line contains integer n — the total number of beavers, 2 ≤ n. The second line contains n space-separated integers — the initial beaver permutation.

The third line contains integer q — the number of queries, 1 ≤ q ≤ 105. The next q lines contain the queries. Each query i looks as pi xiyi, where pi is the query type (1 is to shave beavers from xi to yi, inclusive, 2 is to swap beavers on positions xi and yi). All queries meet the condition: 1 ≤ xi < yi ≤ n.

  • to get 30 points, you need to solve the problem with constraints: n ≤ 100 (subproblem B1);
  • to get 100 points, you need to solve the problem with constraints: n ≤ 3·105 (subproblems B1+B2).

Note that the number of queries q is limited 1 ≤ q ≤ 105 in both subproblem B1 and subproblem B2.

Output

For each query with pi = 1, print the minimum number of Beavershave 5000 sessions.

Examples
input
5
1 3 4 2 5
6
1 1 5
1 3 4
2 2 3
1 1 5
2 1 5
1 1 5
output
2
1
3
5

 题意:

  给你长度n的序列,m次询问

  1:x -> y 的花费  满足 每次 选择 以一个a值  能到大其右边任意位置 (即最长连续上升子序列)算一次路径,问从x值到达y值,需要几次

  2:x,y  交换a[x],a[y];

题解:

  假设x+1在 x的右边 那么此x的位置值为 1,即任意的区间求和

  有交换操作,线段树维护a[x],a[y]对序列的影响即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 3e5+, M = 2e5++, mod = 1e9+, inf = 0x3fffffff; int id[N],a[N],n,m,v[N*];
void update(int i,int ll,int rr,int x,int c) {
if(ll == rr) {
v[i] = c;
return ;
}
if(x <= mid) update(ls,ll,mid,x,c);
else update(rs,mid+,rr,x,c);
v[i] = v[ls] + v[rs];
}
int ask(int i,int ll,int rr,int x,int y) {
if(ll == x && y == rr) {
return v[i];
}
if(y <= mid) return ask(ls,ll,mid,x,y);
else if(x > mid) return ask(rs,mid+,rr,x,y);
else return ask(ls,ll,mid,x,mid) + ask(rs,mid+,rr,mid+,y);
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]),id[a[i]] = i;
for(int i = ; i < n; ++i) {
if(id[i] > id[i+]) update(,,n,i,);
}
scanf("%d",&m);
for(int i = ; i <= m; ++i) {
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op == ) {
printf("%d\n",ask(,,n,x,y-) + );
} else {
int tmp1 = a[x];
int tmp2 = a[y];
int tt = id[a[x]];
id[a[x]] = id[a[y]];
id[a[y]] = tt;
swap(a[x],a[y]);
if(tmp1+ <= n && id[tmp1] > id[tmp1+]) update(,,n,tmp1,);
if(tmp1- >= && id[tmp1-] < id[tmp1]) update(,,n,tmp1-,); if(tmp2+ <= n && id[tmp2] < id[tmp2+]) update(,,n,tmp2,);
if(tmp2- >= && id[tmp2-] > id[tmp2]) update(,,n,tmp2-,);
}
}
return ;
}

  

codeforce ABBYY Cup 3.0 - Finals (online version) B2. Shave Beaver! 线段树的更多相关文章

  1. ABBYY Cup 3.0 - Finals (online version)

    A 开个数组记录一下 #include <iostream> #include<cstdio> #include<cstring> #include<algo ...

  2. Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】

    传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...

  3. VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线+线段树

    题目链接: http://codeforces.com/problemset/problem/522/D D. Closest Equals time limit per test3 secondsm ...

  4. C.Fountains(Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)+线段树+RMQ)

    题目链接:http://codeforces.com/contest/799/problem/C 题目: 题意: 给你n种喷泉的价格和漂亮值,这n种喷泉题目指定用钻石或现金支付(分别用D和C表示),C ...

  5. Codeforces VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线线段树 求区间相同数的最小距离

    D. Closest Equals Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/prob ...

  6. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  7. composer install 遇到问题 Problem 1 - phpunit/phpunit 5.7.5 requires php ^5.6 || ^7.0 -> your PHP version (5.5.3 0) does not satisfy that requirement.

    $ composer install Loading composer repositories with package information Updating dependencies (inc ...

  8. Pycharm 中You are using pip version 10.0.1, however version 18.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command.

    今天运行程序的时候出现了: You are using pip version 10.0.1, however version 18.1 is available.You should conside ...

  9. pip install psutil出错-You are using pip version 10.0.1, however version 18.0 is available.

    今天想用python代替shell做运维相关的事,写代码都是在本机,调试在服务器上 C:\Users\0>pip install psutilRequirement already satisf ...

随机推荐

  1. ios 多线程必读内容 :锁

    大学时的生产者消费者问题还记得吗?ios中的锁,请阅读以下官方文档,虽然是英文的,但是说的非常准确: Threading Programming Guide 中的 Synchronization ht ...

  2. Selenium webdriver 操作日历控件

    一般的日期控件都是input标签下弹出来的,如果使用webdriver 去设置日期, 1. 定位到该input 2. 使用sendKeys 方法 比如: 但是,有的日期控件是readonly的 比如1 ...

  3. Django~static files

    such as images, JavaScript, or CSS https://docs.djangoproject.com/en/1.9/howto/static-files/ django. ...

  4. [第三方]SCNetworkReachability 获取网络状态控件使用方法

    用Cocoa Pods导入控件以后 直接导头文件 复制以下代码 [SCNetworkReachability host:@"github.com" reachabilityStat ...

  5. simpleTree简单使用

    SimpleTree使用起来比较方便,它实现了最基本的树形菜单的功能,包括1个JS文件.1个CSS文件和5个图标文件. 使用时只要将相关文件复制到项目中,并在相应的页面引用它就行,例如: <!D ...

  6. 【leetcode】 Unique Binary Search Trees (middle)☆

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. HDU 4314 Save the dwarfs (DP) ---转载

    题目:传送门. 这个是DP,比赛的时候用贪心写了好久没写出来. 题意: 有n个矮人被困在深度为h的井中,每个矮人都ai(脚到肩膀的高度)和bi(手臂长度), 当存在a1 + a2 + ... + ak ...

  8. 单击双击手势(UITapGestureRecognizer)

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  9. iOS 开发多线程篇—GCD的常见用法

    iOS开发多线程篇—GCD的常见用法 一.延迟执行 1.介绍 iOS常见的延时执行有2种方式 (1)调用NSObject的方法 [self performSelector:@selector(run) ...

  10. chrome shortcutkey

    按下Shift并点击链接 – 在新窗口打开链接. Ctrl+ – 切换到最后一个标签. Ctrl+Shift+V – 将剪切板中的内容无格式粘贴(举个例子,将你从网页中复制的HTML格式内容粘贴为纯文 ...