1.基本理论

拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为:

   为了更适合于数字图像处理,将该方程表示为离散形式:


   另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示。图5-9(a)表示离散拉普拉斯算子的模板,图5-9(b)表示其扩展模板,图5-9(c)则分别表示其他两种拉普拉斯的实现模板。从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮。因为图像中的边缘就是那些灰度发生跳变的区域,所以拉普拉斯锐化模板在边缘检测中很有用。一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。但此算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。同梯度算子一样,拉普拉斯算子也会增强图像中的噪声,有时用拉普拉斯算子进行边缘检测时,可将图像先进行平滑处理。

图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算能够突出图像细节,使图像变得更为清晰。由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的缓慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理,产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像。拉普拉斯锐化的基本方法可以由下式表示:

这种简单的锐化方法既可以产生拉普拉斯锐化处理的效果,同时又能保留背景信息,将原始图像叠加到拉普拉斯变换的处理结果中去,可以使图像中的各灰度值得到保留,使灰度突变处的对比度得到增强,最终结果是在保留图像背景的前提下,突现出图像中小的细节信息。

4.实验结果与分析

图5-10(a)显示了一幅花朵的图片,图5-10(b)显示了用图5-9(a)所示的拉普拉斯模板对该图像滤波后的结果。由图可以看出,将原始图像通过拉普拉斯变换后增强了图像中灰度突变处的对比度,使图像中小的细节部分得到增强并保留了图像的背景色调,使图像的细节比原始图像更加清晰。基于拉普拉斯变换的图像增强已成为图像锐化处理的基本工具。

摘自:http://book.51cto.com/art/200808/84592.htm

paper 109 :图像处理中的拉普拉斯算子的更多相关文章

  1. 在Latex中,拉普拉斯算子的小写符号l怎么表示

    如下图所示的小写字母l,在Latex中不知道该如何表示,试过用\mathcal但是发现不行,因为\mathcal只支持大写字母. 正确方法: \ell

  2. paper 119:[转]图像处理中不适定问题-图像建模与反问题处理

    图像处理中不适定问题 作者:肖亮博士 发布时间:09-10-25 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的 ...

  3. OpenCV图像处理篇之边缘检测算子

    OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 Open ...

  4. 图像处理中任意核卷积(matlab中conv2函数)的快速实现。

    卷积其实是图像处理中最基本的操作,我们常见的一些算法比如:均值模糊.高斯模糊.锐化.Sobel.拉普拉斯.prewitt边缘检测等等一些和领域相关的算法,都可以通过卷积算法实现.只不过由于这些算法的卷 ...

  5. 图像处理中的matlab使用

    图像的矩阵表示 类和图像类型 虽然使用的是整数坐标, 但 MATLAB 中的像素值(亮度)并未限制为整数. 表 1-1 列出了 MATLAB 和图像处理工具箱为描述像素值而支持的各种类. 表中的前 8 ...

  6. 【OpenCV】边缘检测:Sobel、拉普拉斯算子

    推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...

  7. 高斯拉普拉斯算子(Laplace of Gaussian)

    高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子, ...

  8. 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)

    1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...

  9. Laplace(拉普拉斯)算子

    [摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶 ...

随机推荐

  1. IOS 蓝牙相关-BabyBluetooth蓝牙库介绍(4)

    BabyBluetooth 是一个最简单易用的蓝牙库,基于CoreBluetooth的封装,并兼容ios和mac osx. 特色: 基于原生CoreBluetooth框架封装的轻量级的开源库,可以帮你 ...

  2. flex的http URL转码与解码

    private function httpEncoding(param:String):String{    //转码     return encodeURIComponent(param); } ...

  3. GO语言练习:第二个工程--模拟音乐播放器

    1.代码 2.编译及运行 1.目录结构 1.1) $ tree . ├── mplayer.go └── src ├── mlib │   ├── manager.go │   └── manager ...

  4. 最新Velocity使用和Velocity语法

    Velocity语法 Velocity的使用要用到下面几个包,可以从官网下载,commons-collections.jar,velocity-1.4.jar,velocity-dept.jar; 1 ...

  5. JQuery+Ajax制作省市联动

    $(document).ready(function () { $("#Province").append("<option value=''>" ...

  6. 李洪强漫谈iOS开发[C语言-048]-打印平方表

    打印平方表

  7. 李洪强漫谈iOS开发[C语言-047]-数列求和

    // //  main.c //  53 - 数列求和 - 李洪强 // //  Created by vic fan on 16/10/15. //  Copyright © 2016年 李洪强. ...

  8. nfs基本配置

    一.安装nfs: yum install nfs-utils rpcbind 创建共享目录:mkdir -p /XXX/export/ 修改配置文件:vim /etc/exports /XXX/exp ...

  9. ArcGIS AddIN开发异常之--修饰符“static”对该项无效

    修饰符“static”对该项无效, 修饰符“internal”对该项无效. 该异常弹出的位置为Config.Designer.CS文件中相关插件的声明附近 internal static string ...

  10. 论meta name= viewport content= width=device-width initial-scale=1 minimum-scale=1 maximum-scale=1的作用

    一.先明白几个概念 phys.width: device-width: 一般我们所指的宽度width即为phys.width,而device-width又称为css-width. 其中我们可以获取ph ...