【GoLang】GoLang 官方 对 error 处理的意见
The Go Blog
Errors are values
12 January 2015
A common point of discussion among Go programmers, especially those new to the language, is how to handle errors. The conversation often turns into a lament at the number of times the sequence
if err != nil {
return err
}
shows up. We recently scanned all the open source projects we could find and discovered that this snippet occurs only once per page or two, less often than some would have you believe. Still, if the perception persists that one must type
if err != nil
all the time, something must be wrong, and the obvious target is Go itself.
This is unfortunate, misleading, and easily corrected. Perhaps what is happening is that programmers new to Go ask, "How does one handle errors?", learn this pattern, and stop there. In other languages, one might use a try-catch block or other such mechanism to handle errors. Therefore, the programmer thinks, when I would have used a try-catch in my old language, I will just type if
err
!=
nil
in Go. Over time the Go code collects many such snippets, and the result feels clumsy.
Regardless of whether this explanation fits, it is clear that these Go programmers miss a fundamental point about errors: Errors are values.
Values can be programmed, and since errors are values, errors can be programmed.
Of course a common statement involving an error value is to test whether it is nil, but there are countless other things one can do with an error value, and application of some of those other things can make your program better, eliminating much of the boilerplate that arises if every error is checked with a rote if statement.
Here's a simple example from the bufio
package's Scanner
type. Its Scan
method performs the underlying I/O, which can of course lead to an error. Yet the Scan
method does not expose an error at all. Instead, it returns a boolean, and a separate method, to be run at the end of the scan, reports whether an error occurred. Client code looks like this:
scanner := bufio.NewScanner(input)
for scanner.Scan() {
token := scanner.Text()
// process token
}
if err := scanner.Err(); err != nil {
// process the error
}
Sure, there is a nil check for an error, but it appears and executes only once. The Scan
method could instead have been defined as
func (s *Scanner) Scan() (token []byte, error)
and then the example user code might be (depending on how the token is retrieved),
scanner := bufio.NewScanner(input)
for {
token, err := scanner.Scan()
if err != nil {
return err // or maybe break
}
// process token
}
This isn't very different, but there is one important distinction. In this code, the client must check for an error on every iteration, but in the real Scanner
API, the error handling is abstracted away from the key API element, which is iterating over tokens. With the real API, the client's code therefore feels more natural: loop until done, then worry about errors. Error handling does not obscure the flow of control.
Under the covers what's happening, of course, is that as soon as Scan
encounters an I/O error, it records it and returns false
. A separate method, Err
, reports the error value when the client asks. Trivial though this is, it's not the same as putting
if err != nil
everywhere or asking the client to check for an error after every token. It's programming with error values. Simple programming, yes, but programming nonetheless.
It's worth stressing that whatever the design, it's critical that the program check the errors however they are exposed. The discussion here is not about how to avoid checking errors, it's about using the language to handle errors with grace.
The topic of repetitive error-checking code arose when I attended the autumn 2014 GoCon in Tokyo. An enthusiastic gopher, who goes by @jxck_
on Twitter, echoed the familiar lament about error checking. He had some code that looked schematically like this:
_, err = fd.Write(p0[a:b])
if err != nil {
return err
}
_, err = fd.Write(p1[c:d])
if err != nil {
return err
}
_, err = fd.Write(p2[e:f])
if err != nil {
return err
}
// and so on
It is very repetitive. In the real code, which was longer, there is more going on so it's not easy to just refactor this using a helper function, but in this idealized form, a function literal closing over the error variable would help:
var err error
write := func(buf []byte) {
if err != nil {
return
}
_, err = w.Write(buf)
}
write(p0[a:b])
write(p1[c:d])
write(p2[e:f])
// and so on
if err != nil {
return err
}
This pattern works well, but requires a closure in each function doing the writes; a separate helper function is clumsier to use because the err
variable needs to be maintained across calls (try it).
We can make this cleaner, more general, and reusable by borrowing the idea from the Scan
method above. I mentioned this technique in our discussion but @jxck_
didn't see how to apply it. After a long exchange, hampered somewhat by a language barrier, I asked if I could just borrow his laptop and show him by typing some code.
I defined an object called an errWriter
, something like this:
type errWriter struct {
w io.Writer
err error
}
and gave it one method, write.
It doesn't need to have the standard Write
signature, and it's lower-cased in part to highlight the distinction. The write
method calls the Write
method of the underlying Writer
and records the first error for future reference:
func (ew *errWriter) write(buf []byte) {
if ew.err != nil {
return
}
_, ew.err = ew.w.Write(buf)
}
As soon as an error occurs, the write
method becomes a no-op but the error value is saved.
Given the errWriter
type and its write
method, the code above can be refactored:
ew := &errWriter{w: fd}
ew.write(p0[a:b])
ew.write(p1[c:d])
ew.write(p2[e:f])
// and so on
if ew.err != nil {
return ew.err
}
This is cleaner, even compared to the use of a closure, and also makes the actual sequence of writes being done easier to see on the page. There is no clutter any more. Programming with error values (and interfaces) has made the code nicer.
It's likely that some other piece of code in the same package can build on this idea, or even use errWriter
directly.
Also, once errWriter
exists, there's more it could do to help, especially in less artificial examples. It could accumulate the byte count. It could coalesce writes into a single buffer that can then be transmitted atomically. And much more.
In fact, this pattern appears often in the standard library. The archive/zip
and net/http
packages use it. More salient to this discussion, the bufio
package's Writer
is actually an implementation of the errWriter
idea. Although bufio.Writer.Write
returns an error, that is mostly about honoring the io.Writer
interface. The Write
method of bufio.Writer
behaves just like our errWriter.write
method above, with Flush
reporting the error, so our example could be written like this:
b := bufio.NewWriter(fd)
b.Write(p0[a:b])
b.Write(p1[c:d])
b.Write(p2[e:f])
// and so on
if b.Flush() != nil {
return b.Flush()
}
There is one significant drawback to this approach, at least for some applications: there is no way to know how much of the processing completed before the error occurred. If that information is important, a more fine-grained approach is necessary. Often, though, an all-or-nothing check at the end is sufficient.
We've looked at just one technique for avoiding repetitive error handling code. Keep in mind that the use of errWriter
or bufio.Writer
isn't the only way to simplify error handling, and this approach is not suitable for all situations. The key lesson, however, is that errors are values and the full power of the Go programming language is available for processing them.
Use the language to simplify your error handling.
But remember: Whatever you do, always check your errors!
Finally, for the full story of my interaction with @jxck_, including a little video he recorded, visit his blog.
By Rob Pike
参考资料:
https://blog.golang.org/errors-are-values
【GoLang】GoLang 官方 对 error 处理的意见的更多相关文章
- [golang]golang如何覆盖输出console,实现进度条;golang一个骚气的进度提示库
[golang]golang如何覆盖输出console,实现进度条 package main import( "fmt" "os" "time&quo ...
- 【GoLang】GoLang 错误处理 -- 使用 error is value 的思路处理,检查并处理error
吐血推荐: https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully 参考资料: https:/ ...
- GO语言(golang)官方网站!
GO语言官方网站,在上面可以查看所有API文档.使用在线工具编写程序,你可以去看看!! https://golang.org/
- golang 用defer 捕获error 需小心
有时一个函数内需要根据最后是否出错,决定是否执行某个操作.这时候如果函数的分支又比较多,就会比较麻烦了. defer 处理这个情况刚好合适 func main() { var err error by ...
- [golang]golang 汇编
https://lrita.github.io/2017/12/12/golang-asm/#why 在某些场景下,我们需要进行一些特殊优化,因此我们可能需要用到golang汇编,golang汇编源于 ...
- [golang]golang time.After内存泄露问题分析
无意中看到一篇文章说,当在for循环里使用select + time.After的组合时会产生内存泄露,于是进行了复现和验证,以此记录 内存泄露复现 问题复现测试代码如下所示: package mai ...
- [golang]Golang实现高并发的调度模型---MPG模式
Golang实现高并发的调度模型---MPG模式 传统的并发形式:多线程共享内存,这也是Java.C#或者C++等语言中的多线程开发的常规方法,其实golang语言也支持这种传统模式,另外一种是Go语 ...
- [随笔][Golang][golang nil 相关]
nil 是不能比较的 不同类型的nil的address是一样的 不同类型的nil是不能比较的 nil 是map, slice, pointer, channel, func, interface的零值 ...
- 如何加速golang写业务的开发速度
如何加速golang写业务的开发速度 不要忌讳panic golang写业务代码经常会被吐槽,写业务太慢了,其中最大的吐槽点就是,处理各种error太麻烦了.一个项目中,会有30%或者更多的是在处理e ...
随机推荐
- clearfix--清除浮动
.clearfix { zoom: ; display: table; width: %; } .clearfix:after { content: " "; display: b ...
- cmd /c和cmd /k 解释,附★CMD命令★ 大全
cmd /c和cmd /k http://leaning.javaeye.com/blog/380810 java的Runtime.getRuntime().exec(commandStr)可以调用执 ...
- XSHELL下直接下载文件到本地(Windows)
xshell很好用,然后有时候想在windows和linux上传或下载某个文件,其实有个很简单的方法就是rz,sz 首先你的Ubuntu需要安装rz.sz(如果没有安装请执行以下命令,安装完的请跳过. ...
- 今天讲的是JQ 的动画效果
老规矩,先贴代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...
- 同步和异步UDP使用方法
同步和异步Socket的区别是,同步Socket会阻塞当前进程,而异步Socket则不会. 首先,一个最简单的同步UDP收发程序实例.可以看到,发送调用Send()函数之后,开始调用Receive接收 ...
- python基础教程1
python作为一种编程语言,诞生于1990年左右,算是一门比较年轻的语言(也算是90后吧),它是面向对象的,但不同于JAVA\C#那么严格要求一切皆对象,更接近于C++,是面向过程和面向对象的结合: ...
- 一个简单的html5页面在线速成工具!(当然本文主要说下他的成果的结构)
分享一个好玩的web app页面速成工具 当然主要是让大家看下他的原理 看着他的结构大家就该猜到这个了.这个是利用换页之后给当前div加了一个active,然后利用css控制效果 这个毫无疑问是采用最 ...
- webapp中的meta
<!--开发后删除--> <meta http-equiv="Pragma" name="no-store" /><!--必须联网 ...
- Book-编程珠玑-第一章
第一章...二〇一六年十月二十五日 22:41:45 1MB存储空间里大约可以存143,000个号码; 如果每个号码都使用32位整数来表示的话,1MB存储空间里就可以存储250,000个号码; 看得迷 ...
- Back to Edit Distance(LCS + LIS)
Given 2 permutations of integers from 1 to N, you need to find the minimum number of operations nece ...