题目描述



题解

吼题但题解怎么这么迷

考虑一种和题解不同的做法(理解)

先把僵尸离散化,h相同的钦(ying)点一个大小

(可以发现这样每种情况只会被算正好一次)

计算完全被占领的方案,然后1-方案/概率

由于大小确定了,所以最后会被分成若干不相连的块,且块中至少有一只僵尸,大的僵尸能占领小的僵尸的块,所以相邻两块之间一定会断开

那么一种占领的方案对应的是一类高度情况,考虑所有的占领方案即可求出所有的高度情况

定义一个块的编号为所占领的最大僵尸的编号

设f[i]x表示以i为根的子树中点i所在块的编号为x

那么对于f[j]y转移如下:

①x=y

f[j][y]*(僵尸x经过i--j的方案数)-->f[i][x]

那么x和y在同一个块中,因为一个块只有一只僵尸,所以块内必须要连通

②x<y

f[j][y]*(僵尸y不经过i--j的方案数)-->f[i][x]

x和y不在同一个块中,所以x和y不能连通,即较大的僵尸(y)不能走到另一个点(i)

并且要保证j中存在y,不存在x,原因见下文

③x>y

f[j][y]*(僵尸x不经过i--j的方案数)-->f[i][x]

原因&范围同上

初值为f[i][x]=[x>=i处最大的僵尸能力值](x>0)

对于②③的限制:

因为要保证以某个点i为最浅点的块内刚好存在僵尸x

在i与fa[i]断开时保证了x在i的子树中,i所在块的叶子与块中叶子的儿子断开保证了x不在块外,所以块中必定存在x

时间复杂度O(n3),前后缀优化成O(n2)

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define add(a,b) a=((a)+(b))%998244353
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define mod 998244353
#define Mod 998244351
using namespace std; struct type{
int x,id;
} b[2001];
int a[4002][2];
int c[2001][2001];
int C[2001];
int ls[2001];
int L[2001];
int R[2001];
int h[2001];
int H[2001];
long long f[2001][2001];
long long s1[2002];
long long s2[2002];
bitset<2001> bz[2001];
int T,N,n,m,i,j,k,l,len;
long long ans,s; bool cmp(type a,type b)
{
return a.x<b.x;
} void New(int x,int y)
{
++len;
a[len][0]=y;
a[len][1]=ls[x];
ls[x]=len;
} long long qpower(long long a,int b)
{
long long ans=1; while (b)
{
if (b&1)
ans=ans*a%mod; a=a*a%mod;
b>>=1;
} return ans;
} void Dfs(int Fa,int t)
{
int i; if (h[t]) bz[t][h[t]]=1; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
Dfs(t,a[i][0]);
bz[t]|=bz[a[i][0]];
}
} void dfs(int Fa,int t)
{
int i,j,k,l,id;
long long x; fo(i,max(1,h[t]),N) f[t][i]=1; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
id=i/2;
dfs(t,a[i][0]); fo(k,1,N)
{
s1[k]=s1[k-1]; if (bz[a[i][0]][k])
add(s1[k],f[a[i][0]][k]);
}
s2[N+1]=0;
fd(k,N,1)
{
s2[k]=s2[k+1]; if (bz[a[i][0]][k])
add(s2[k],f[a[i][0]][k]*max(R[id]-max(H[k],L[id])+1,0)%mod);
} fo(j,1,N)
{
if (!bz[a[i][0]][j])
f[t][j]=f[t][j]*(s2[j+1]+s1[j-1]*max(R[id]-max(H[j],L[id])+1,0)%mod+f[a[i][0]][j]*max(min(H[j]-1,R[id])-L[id]+1,0)%mod)%mod;
else
f[t][j]=f[t][j]*(f[a[i][0]][j]*max(min(H[j]-1,R[id])-L[id]+1,0)%mod)%mod; // O(n^3)
// fo(k,1,N)
// if (f[a[i][0]][k])
// {
// if (j<k)
// x=max(R[id]-max(H[k],L[id])+1,0);
// if (j==k)
// x=max(min(H[k]-1,R[id])-L[id]+1,0);
// if (j>k)
// x=max(R[id]-max(H[j],L[id])+1,0);
//
// if (j==k || bz[a[i][0]][k] && !bz[a[i][0]][j])
// add(F[j],f[t][j]*f[a[i][0]][k]%mod*x);
// }
}
}
} int main()
{
freopen("zombie.in","r",stdin);
freopen("zombie.out","w",stdout); scanf("%d",&T);
for (;T;--T)
{
memset(bz,0,sizeof(bz));
memset(ls,0,sizeof(ls));
memset(h,0,sizeof(h));
memset(H,0,sizeof(H));
memset(f,0,sizeof(f));
memset(C,0,sizeof(C));
len=1; scanf("%d%d",&n,&m);
fo(i,1,n-1)
{
scanf("%d%d%d%d",&j,&k,&L[i],&R[i]); New(j,k);
New(k,j);
}
fo(i,1,m)
{
scanf("%d%d",&j,&k);
h[j]=max(h[j],k);
} N=0;
fo(i,1,n)
if (h[i])
b[++N]={h[i],i}; sort(b+1,b+N+1,cmp); fo(i,1,N)
{
H[i]=b[i].x;
h[b[i].id]=i;
} Dfs(0,1);
dfs(0,1); ans=0;
fo(i,1,N)
add(ans,f[1][i]); s=1;
fo(i,1,n-1)
s=s*(R[i]-L[i]+1)%mod;
ans=ans*qpower(s,Mod)%mod; printf("%lld\n",((1-ans)%mod+mod)%mod);
} fclose(stdin);
fclose(stdout); return 0;
}

6392. 【NOIP2019模拟2019.10.26】僵尸的更多相关文章

  1. 6389. 【NOIP2019模拟2019.10.26】小w学图论

    题目描述 题解 之前做过一次 假设图建好了,设g[i]表示i->j(i<j)的个数 那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同 从n~1染色,点i的方案 ...

  2. 6377. 【NOIP2019模拟2019.10.05】幽曲[埋骨于弘川]

    题目描述 题解 随便bb 详细题解见 https://www.cnblogs.com/coldchair/p/11624979.html https://blog.csdn.net/alan_cty/ ...

  3. 【NOIP2019模拟2019.10.07】果实摘取 (约瑟夫环、Mobius反演、类欧、Stern-Brocot Tree)

    Description: 小 D 的家门口有一片果树林,果树上果实成熟了,小 D 想要摘下它们. 为了便于描述问题,我们假设小 D 的家在二维平面上的 (0, 0) 点,所有坐标范围的绝对值不超过 N ...

  4. 6383. 【NOIP2019模拟2019.10.07】果实摘取

    题目 题目大意 给你一个由整点组成的矩形,坐标绝对值范围小于等于\(n\),你在\((0,0)\),一开始面向\((1,0)\),每次转到后面第\(k\)个你能看到的点,然后将这条线上的点全部标记删除 ...

  5. 6380. 【NOIP2019模拟2019.10.06】小w与最长路(path)

    题目 题目大意 给你一棵树,对于每一条边,求删去这条边之后,再用一条边(自己定)连接两个连通块,形成的树的直径最小是多少. 正解 首先,将这棵树的直径给找出来.显然,如果删去的边不在直径上,那么答案就 ...

  6. 6374. 【NOIP2019模拟2019.10.04】结界[生与死的境界]

    题目 题目大意 给你一个数列,每次可以选择任意两个相邻的数\(x\)和\(y\),将其删去,并在原来位置插入\(x+2y\). 每次询问一个区间,对这个区间进行上述操作.求最后剩下的数最大是多少. 答 ...

  7. 2019.10.26 csp-s模拟测试88 反思总结

    今天的主人公是什么? 60.1K!!!! 先扔代码再更新防止我等会儿一上头不打算写完题解 T1: #include<iostream> #include<cstdio> #in ...

  8. 2019.10.26 CSP%您赛第三场

    \(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(ligh ...

  9. 6424. 【NOIP2019模拟2019.11.13】我的订书机之恋

    题目描述 Description Input Output Sample Input 见下载 Sample Output 见下载 Data Constraint 题解 lj题卡线段树 求出每个右端点往 ...

随机推荐

  1. Delphi加密解密算法

    // 加密方法一(通过密钥加密解密)function EncryptString(Source, Key: string): string;function UnEncryptString(Sourc ...

  2. maven项目的导包问题,已经加载jar包了可是idea检测不到

    1.详细请参考 https://blog.csdn.net/brainhang/article/details/76725080 把测试模式注释即可

  3. SpringBoot中定时任务默认是串行执行 如何设置并行

    SpringBoot项目中,定时任务默认是串行执行的,不论启动多少任务,都是一个执行完成,再执行下一个. 如何设置并行呢? @EnableAsync  和@Async 这两个注解来实现 ,具体如下: ...

  4. MySql日期加天数,小时,分钟...得到新的时间

    在当前的日期上加三天,天数随便改: SELECT date_add(CURRENT_DATE(), interval 3 day); 在指定的日期上加三天: SELECT date_add('2014 ...

  5. EML文件(MIME邮件)格式分析

    电子邮件普遍遵循的邮件技术规范.MIME邮件由邮件头和邮件体两部分组成.邮件头包括:标题,送信人,收信人,创建日期,邮件体内容类型和邮件体编码方式等内容.邮件体包括:正文,超文本,内嵌数据和附件等内容 ...

  6. 秒懂Vuejs、Angular、React原理和前端发展历史

    「前端程序发展的历史」 「 不学自知,不问自晓,古今行事,未之有也 」 我们都知道现在流行的框架:Vue.Js.AngularJs.ReactJs,已经逐渐应用到各个项目和实际应用中,它们都是MVVM ...

  7. P1067多项式输出

    这道题是2009普及组的题,仍然是一个字符串+模拟.(蒻到先不刷算法) 这道题的题干给了很多的提示,也很全面,但是当我把种种情况都考虑到了后,在写代码的过程中仍然出现了很多的错误,wa了三四次.其实导 ...

  8. django基础知识之认识MVT MVC??

    MVT Django是一款python的web开发框架 与MVC有所不同,属于MVT框架 m表示model,负责与数据库交互 v表示view,是核心,负责接收请求.获取数据.返回结果(相当于mvc的c ...

  9. golang 一个字符串表达式替换的函数

    package util import ( "fmt" "reflect" "regexp" "strconv" &qu ...

  10. django后台返回html字段会产生XSS防护的解决方式

    1.在前端模块里面写 {{  page_str|safe }} 2.在后端 from django.utils.safestring import mark_safe pake_str = mark_ ...