uoj #450[集训队作业2018]复读机
\(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\)
\(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\(x_i\),那么答案为\(n!\sum\limits_{d|x_i,\sum x_i=n} \prod \frac{1}{x_i!}\),这个显然可以暴力背包生成函数,因为有\(d|x_i\)的限制,那么可以套用单位根反演,单个复读机的生成函数为\(\sum_{i=0}^{\infty}[d|i]\frac{x^i}{i!}\),也就是
\[\frac{1}{d}\sum_{i=0}^{\infty}\sum_{j=0}^{d-1}\omega_{d}^{ij}\frac{x^i}{i!}\]\[\frac{1}{d}\sum_{j=0}^{d-1}\sum_{i=0}^{\infty}\frac{\omega_{d}^{ij}x^i}{i!}\]\[\frac{1}{d}\sum_{i=0}^{d-1}e^{\omega_{d}^{i}x}\]
然后求出这个生成函数的\(k\)次方的\(n\)次项系数乘上\(n!\)就好了(注意到\(n!\)会和\(n\)次项中的\(\frac{1}{n!}\)抵消),实现的时候把\(e^x\)看成未知数,枚举\(e^{\omega_{d}^{0}x},e^{\omega_{d}^{1}x},(d=3\)时有\(e^{\omega_{d}^{2}x})\)出现了多少次,然后系数乘上组合数即可(说白了就是二项式定理展开)
uoj #450[集训队作业2018]复读机的更多相关文章
- 【UOJ#450】[集训队作业2018] 复读机
题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...
- [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]
题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...
- UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...
- 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...
- uoj450 【集训队作业2018】复读机(生成函数,单位根反演)
uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...
- UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ#418. 【集训队作业2018】三角形
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...
- UOJ#422. 【集训队作业2018】小Z的礼物
#422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...
随机推荐
- C++入门经典-例6.17-输出每行数组中的最小值
1:代码如下: // 6.17.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> using ...
- [Java]算术表达式求值之一(中序表达式转后序表达式方案)
第二版请见:https://www.cnblogs.com/xiandedanteng/p/11451359.html 入口类,这个类的主要用途是粗筛用户输入的算术表达式: package com.h ...
- navicat常用快捷键与SQL基本使用
一.Navicat常用快捷键 1,Ctrl+q就会弹出一个sql输入窗口 2,Ctrl+r就执行sql了 3,按f6会弹出一个命令窗口 4,Ctrl+/ 注释 5,Ctrl +Shift+/ 解除注释 ...
- Android 多分辨率与不同语言适配
一.适配不同国家语言 智能手机系统设置里各国语言的选项,然后我们项目里可以通过资源目录实现适配语言.我们知道工程的根目录有个res/的目录,res/下有一个资源类型的目录,其中有个values/str ...
- tomcat服务器经常需要重启
程序看着运行正常,但是点击几下就没反应了. 可能原因:1.tomcat内存不足 2.程序中有资源未释放.比如session(hibernate的)等(需要close)
- 代码实现:判断101-200之间有多少个素数(质数),并输出所有素数。 程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数。
package com.loaderman.Coding; /* 判断101-200之间有多少个素数(质数),并输出所有素数. 程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能 ...
- 第二章 SpringCloud之Eureka-Server服务发现组件
1.Eureka简介 文档:https://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html ############### ...
- 【DVWA】File Inclusion(文件包含漏洞)通关教程
日期:2019-07-28 20:58:29 更新: 作者:Bay0net 介绍: 0x01. 漏洞介绍 文件包含时,不管包含的文件是什么类型,都会优先尝试当作 php 文件执行. 如果文件内容有 p ...
- PHP LDA off 解决
搭建完zabbix初始登录zabbix显示 PHP LDAP off 解决 不需要重新编译php 就可以增加 LDAP 模块 .首先进入自己的 PHP 安装目录中找到 ldap 文件夹 [root@b ...
- harbor报错解决
1. [root@host-10-1-1-71 harbor]# docker login 10.1.1.71:5000Username (admin): Password: Error respon ...