传送门

\(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\)

\(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\(x_i\),那么答案为\(n!\sum\limits_{d|x_i,\sum x_i=n} \prod \frac{1}{x_i!}\),这个显然可以暴力背包生成函数,因为有\(d|x_i\)的限制,那么可以套用单位根反演,单个复读机的生成函数为\(\sum_{i=0}^{\infty}[d|i]\frac{x^i}{i!}\),也就是

\[\frac{1}{d}\sum_{i=0}^{\infty}\sum_{j=0}^{d-1}\omega_{d}^{ij}\frac{x^i}{i!}\]\[\frac{1}{d}\sum_{j=0}^{d-1}\sum_{i=0}^{\infty}\frac{\omega_{d}^{ij}x^i}{i!}\]\[\frac{1}{d}\sum_{i=0}^{d-1}e^{\omega_{d}^{i}x}\]

然后求出这个生成函数的\(k\)次方的\(n\)次项系数乘上\(n!\)就好了(注意到\(n!\)会和\(n\)次项中的\(\frac{1}{n!}\)抵消),实现的时候把\(e^x\)看成未知数,枚举\(e^{\omega_{d}^{0}x},e^{\omega_{d}^{1}x},(d=3\)时有\(e^{\omega_{d}^{2}x})\)出现了多少次,然后系数乘上组合数即可(说白了就是二项式定理展开)

代码

uoj #450[集训队作业2018]复读机的更多相关文章

  1. 【UOJ#450】[集训队作业2018] 复读机

    题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...

  2. [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]

    题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...

  3. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  4. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  5. uoj450 【集训队作业2018】复读机(生成函数,单位根反演)

    uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...

  6. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  7. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  8. UOJ#418. 【集训队作业2018】三角形

    #418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...

  9. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

随机推荐

  1. JS框架_(JQuery.js)圆形多选菜单选项

    百度云盘 传送门 密码:zb1c 圆形多选菜单选项效果: <!DOCTYPE html> <html lang="en" > <head> &l ...

  2. ES6非常棒的特性-解构

    https://blog.csdn.net/maoxunxing/article/details/79772946

  3. [CSP-S模拟测试]:线性代数(模拟)

    题目传送门(内部题113) 输入格式 第一行一个正整数$n$. 接下来$n$行,每行$n$个整数,描述$C$矩阵.保证输入的是一个林先森矩阵. 输出格式 若不可能实现,则输出一行$Impossible ...

  4. sublime text3 最新 license注册码分享 2018

    —– BEGIN LICENSE —– Die Socialisten GmbH 10 User License EA7E-800613 51311422 E45F49ED 3F0ADE0C E5B8 ...

  5. python3笔记八:python数据类型-Number数字

    一:学习内容 数字类型分类:整数.浮点数.复数.布尔值 数字类型转换 数字类型的数学功能:abs().max().min().pow().round().math函数.random函数 二:数字类型分 ...

  6. 深入理解java集合

    集合 Java集合分为三大接口:①Collection ②Map ③Iterator

  7. for 循环 以及 for 循环的嵌套

    格式:for (; ; ) 打印20遍你好 ; i <= ; i++) { Console.WriteLine("你好"); } 输入一个整数,计算从1加到这个数的结果 Co ...

  8. golang 使用reflect反射结构体

    "反射结构体"是指在程序执行时,遍历结构体中的字段以及方法. 1.反射结构体 下面使用一个简单的例子说明如何反射结构体. 定义一个结构体,包括3个字段,以及一个方法. 通过refl ...

  9. LoadRunner运行时异常处理

    VuGen提供了错误处理函数lr_continue_on_error,用来在脚本中实时修改Vuser的出错设置.lr_continue_on_error函数语法结构如下: Loadrunner在运行过 ...

  10. C#规范整理·多线程\异步\并行\任务

    有一个领域的工作处理起来几乎总是最棘手的,这就是多线程编码.多线程编码是所有开发人员前进途中的一个坎,现在,该是尝试克服它的时候了. 1.区分异步和多线程应用场景 先看一个例子 private voi ...