2019 杭电多校 8 1003

题目链接:HDU 6659

比赛链接:2019 Multi-University Training Contest 8

Problem Description

Acesrc is a famous mathematician at Nanjing University second to none. Playing with interesting numbers is his favorite. Today, he finds a manuscript when cleaning his room, which reads

... Let \(f(d,n)\) denote the number of occurrences of digit \(d\) in decimal representations of integers \(1,2,3,⋯,n\). The function has some fantastic properties ...

... Obviously, there exist some nonnegative integers \(k\), such that \(f(d,k)=k\), and I decide to call them \(d\)-good numbers ...

... I have found all d-good numbers not exceeding \(10^{1000}\), but the paper is too small to write all these numbers ...

Acesrc quickly recollects all \(d\)-good numbers he found, and he tells Redsun a question about \(d\)-good numbers: what is the maximum \(d\)-good number no greater than \(x\)? However, Redsun is not good at mathematics, so he wants you to help him solve this problem.

Input

The first line of input consists of a single integer \(q (1\le q\le 1500)\), denoting the number of test cases. Each test case is a single line of two integers \(d (1\le d\le 9)\) and \(x (0\le x\le 10^{18})\).

Output

For each test case, print the answer as a single integer in one line. Note that \(0\) is trivially a \(d\)-good number for arbitrary \(d\).

Sample Input

3
1 1
1 199999
3 0

Sample Output

1
199990
0

Solution

题意

定义 \(f(d, n)\) 为十进制下 \(1\) 到 \(n\) 所有数的数位中数字 \(d\) 出现的次数。给定 \(x\),找出最大的 \(n(n \le x)\) 满足 \(f(d, n) = n\)。

题解

看到了一个神仙做法。

显然如果 \(f(d, x) = x\) 时就直接输出。

否则,需要缩小 \(x\)。令 \(f(d, x) = y\),则需要将 \(x\) 缩小 \(\lceil \frac{|x - y|}{18} \rceil\)。即 \(x = x - abs(f(d, x) - x) / 18\)。原因是 \(f(d, x)\) 与 \(f(d, x - 1)\) 最多相差 \(18\) 个 \(d\) \(\ (e.g. \ f(9, 10^{18}-1)\ to\ f(9, 10^{18}-2))\)。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; // 计算 1 到 n 中数字 x 出现的次数
ll f(ll d, ll n) {
ll cnt = 0, k;
for (ll i = 1; k = n / i; i *= 10) {
cnt += (k / 10) * i;
int cur = k % 10;
if (cur > d) {
cnt += i;
}
else if (cur == d) {
cnt += n - k * i + 1;
}
}
return cnt;
} int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--) {
ll d, x;
cin >> d >> x;
while (true) {
ll num = f(d, x);
if (num == x) {
cout << x << endl;
break;
} else {
x -= max(1LL, abs(num - x) / 18);
}
}
}
return 0;
}

Reference

2019 Multi-University Training Contest 8——Acesrc and Good Numbers(数学 想法)

HDU 6659 Acesrc and Good Numbers (数学 思维)的更多相关文章

  1. POJ2402/UVA 12050 Palindrome Numbers 数学思维

    A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...

  2. HDU 2674 N!Again(数学思维水题)

    题目 //行开始看被吓一跳,那么大,没有头绪, //看了解题报告,发现这是一道大大大的水题,,,,,//2009 = 7 * 7 * 41//对2009分解,看它有哪些质因子,它最大的质因子是41,那 ...

  3. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  4. 程序设计中的数学思维函数总结(代码以C#为例)

    最近以C#为例,学习了程序设计基础,其中涉及到一些数学思维,我们可以巧妙的将这些逻辑问题转换为代码,交给计算机运算. 现将经常会使用到的基础函数做一总结,供大家分享.自己备用. 1.判断一个数是否为奇 ...

  5. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  6. UVa10025 The ? 1 ? 2 ? ... ? n = k problem 数学思维+规律

    UVa10025 ? 1 ? 2 ? ... ? n = k problem The problem Given the following formula, one can set operator ...

  7. B. Tell Your World(几何数学 + 思维)

    B. Tell Your World time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  8. HDU - 6409:没有兄弟的舞会(数学+思维)

    链接:HDU - 6409:没有兄弟的舞会 题意: 题解: 求出最大的 l[i] 的最大值 L 和 r[i] 的最大值 R,那么 h 一定在 [L, R] 中.枚举每一个最大值,那么每一个区间的对于答 ...

  9. HDU 4611 Balls Rearrangement (数学-思维逻辑题)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4611 题意:给你一个N.A.B,要你求 AC代码: #include <iostream> ...

随机推荐

  1. Linux指定用户运行程序

    参考:http://blog.useasp.net/archive/2015/07/29/run-command-as-different-user-on-linux.aspx 在实际中,我们有时候想 ...

  2. HTTP超详细总结

    HTTP协议概述 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的 ...

  3. vim 更改注释颜色

    在 ~/.vimrc 添加命令: highlight Comment ctermfg=green

  4. java8 Date LocalDate LocaDateTime 互相转化

    java 8中 java.util.Date 类新增了两个方法,分别是from(Instant instant)和toInstant()方法 // Obtains an instance of Dat ...

  5. 还在用 KPI 管研发团队?用 OKR 倍儿爽!

    近几年,经常能听到不少技术管理者在倡导:用 OKR 来管理及打造一个高执行力的研发团队. 据我了解,OKR 最成功的落地公司是在 Google --一家有着非常浓厚工程师文化的公司,后来陆续在 Fac ...

  6. 【Java】 java判断字符串是否为空的方法总结

    以下是java 判断字符串是否为空的四种方法: 方法一: 最多人使用的一个方法, 直观, 方便, 但效率很低: if(s == null ||"".equals(s));方法二: ...

  7. Python值正则表达式(RE)

    要想在Python中使用正则表达式,首先要引入模块: import re . 匹配任意一个 +   匹配至少一个 * 匹配0个至多个 ? 1个或0个(可有可无) - 表范围 \ 转义 ^   在首 $ ...

  8. vue-cli3使用cdn引入

    1. index.html引入: <script src="https://cdn.bootcss.com/moment.js/2.20.1/moment.min.js"&g ...

  9. Javascript中的Date()对象

    创建一个指定的事件对象 需要在构造函数中传递一个表示时间的字符串作为参数例:var d2=new Date("8/27/2019"); 如果直接使用构造函数创建一个Date对象,则 ...

  10. HDU-4747 二分+线段树

    题意:给出长度为n的序列,问任两个区间的mex运算结果的总和. 解法:直接讲线段树做法:我们注意到mex(1,1),mex(1,2),mex(1,3)...mex(1,i)的结果是单调不减的,那么我们 ...