原文地址:http://www.jianshu.com/p/311141f2047d

问题描述







程序实现

13-15

# coding: utf-8

import numpy as np
import numpy.random as random
import matplotlib.pyplot as plt def sign(x):
if(x>=0):
return 1
else:
return -1 def gen_data():
x1=random.uniform(-1,1,1000)
x2=random.uniform(-1,1,1000)
id_array=random.permutation([i for i in range(1000)])
dataY=np.zeros((1000,1))
for i in range(1000):
if(i<1000*0.1):
i = id_array[i]
dataY[i][0]=-sign(x1[i]**2+x2[i]**2-0.6)
else:
i = id_array[i]
dataY[i][0]=sign(x1[i]**2+x2[i]**2-0.6)
dataX=np.concatenate((np.ones((1000,1)),np.array(x1).reshape((1000,1)),np.array(x2).reshape((1000,1))),axis=1)
return dataX,dataY def w_lin(dataX,dataY):
dataX_T=np.transpose(dataX)
tmp=np.dot(np.linalg.inv(np.dot(dataX_T,dataX)),dataX_T)
return np.dot(tmp,dataY) def pred(dataX,wLIN):
pred=np.dot(dataX,wLIN)
num_data=dataX.shape[0]
for i in range(num_data):
pred[i][0]=sign(pred[i][0])
return pred def zero_one_cost(pred,dataY):
return np.sum(pred!=dataY)/dataY.shape[0] def feat_transform(dataX):
num_data=dataX.shape[0]
tmp1=dataX[:,1]*dataX[:,2]
tmp2=dataX[:,1]**2
tmp3=dataX[:,2]**2
new_dataX=np.concatenate(
(dataX,tmp1.reshape((num_data,1)),tmp2.reshape((num_data,1)),tmp3.reshape((num_data,1))),axis=1)
return new_dataX if __name__=="__main__": cost_list=[]
for i in range(1000):
dataX,dataY=gen_data()
wLIN=w_lin(dataX,dataY)
cost_list.append(zero_one_cost(pred(dataX,wLIN),dataY))
# show results
print("the average Ein over 1000 experiments: ",sum(cost_list)/len(cost_list))
plt.figure()
plt.hist(cost_list)
plt.xlabel("zero_one Ein")
plt.ylabel("frequency")
plt.title("13")
plt.savefig("13.png") W=[]
cost_list=[]
for i in range(1000):
# train
dataX,dataY=gen_data()
dataX=feat_transform(dataX)
wLIN=w_lin(dataX,dataY)
W.append(wLIN[:,0].tolist())
# test
testX, testY = gen_data()
testX = feat_transform(testX)
cost_list.append(zero_one_cost(pred(testX, wLIN), testY))
min_cost=min(cost_list)
min_id=cost_list.index(min_cost)
print(W[min_id])
W=np.array(W)
# show w3
print("the average w3 over 1000 experiments: ",np.average(W,axis=0)[3])
plt.figure()
plt.hist(W[:,3].tolist())
plt.xlabel("w3")
plt.ylabel("frequency")
plt.title("14")
plt.savefig("14.png")
# show Eout
print("the average Eout over 1000 experiments: ",sum(cost_list)/len(cost_list))
plt.figure()
plt.hist(cost_list)
plt.xlabel("Eout")
plt.ylabel("frequency")
plt.title("15")
plt.savefig("15.png")

18-20

# coding: utf-8

import numpy as np

def sigmoid(x):
return 1/(1+np.e**(-x)) def read_data(dataFile):
with open(dataFile,'r') as f:
lines=f.readlines()
data_list=[]
for line in lines:
line=line.strip().split()
data_list.append([1.0] + [float(l) for l in line])
dataArray=np.array(data_list)
num_data=dataArray.shape[0]
num_dim=dataArray.shape[1]-1
dataX=dataArray[:,:-1].reshape((num_data,num_dim))
dataY=dataArray[:,-1].reshape((num_data,1))
return dataX,dataY def gradient_descent(w,dataX,dataY,eta):
assert w.shape[0]==dataX.shape[1],"wrong shape!"
assert w.shape[1]==1,"wrong shape of w!"
num_data=dataX.shape[0]
num_dim=dataX.shape[1]
tmp1=-dataY*dataX
tmp2=-dataY*np.dot(dataX,w)
for i in range(num_data):
tmp2[i][0]=sigmoid(tmp2[i][0])
tmp3=np.average(tmp1 * tmp2, axis=0)
new_w=w-eta*tmp3.reshape((num_dim,1))
return new_w def s_gradient_descent(w,dataX,dataY,eta):
assert w.shape[0]==dataX.shape[1],"wrong shape!"
assert w.shape[1]==1,"wrong shape of w!"
assert dataX.shape[0]==1,"wrong shape of x!"
assert dataY.shape[0]==1,"wrong shape of y!"
num_dim=dataX.shape[1]
tmp1=-dataY*dataX
tmp2=-dataY*np.dot(dataX,w)
tmp2[0][0]=sigmoid(tmp2[0][0])
tmp3=np.average(tmp1 * tmp2, axis=0)
new_w=w-eta*tmp3.reshape((num_dim,1))
return new_w def pred(wLOG,dataX):
pred=np.dot(dataX,wLOG)
num_data=dataX.shape[0]
for i in range(num_data):
pred[i][0]=sigmoid(pred[i][0])
if(pred[i][0]>=0.5):
pred[i][0]=1
else:
pred[i][0]=-1
return pred def zero_one_cost(pred,dataY):
return np.sum(pred!=dataY)/dataY.shape[0] if __name__=="__main__":
# train
dataX,dataY=read_data("hw3_train.dat")
num_dim=dataX.shape[1]
w=np.zeros((num_dim,1))
print("\n18")
for i in range(2000):
w=gradient_descent(w,dataX,dataY,eta=0.001)
print("the weight vector within g: ",w[:,0])
# test
testX,testY=read_data("hw3_test.dat")
Eout=zero_one_cost(pred(w,testX),testY)
print("the Eout(g) on the test set: ",Eout) print("\n18.1")
w = np.zeros((num_dim, 1))
for i in range(20000):
w = gradient_descent(w, dataX, dataY, eta=0.001)
print("the weight vector within g: ", w[:, 0])
# test
Eout = zero_one_cost(pred(w, testX), testY)
print("the Eout(g) on the test set: ", Eout) print("\n19")
w=np.zeros((num_dim,1))
for i in range(2000):
w = gradient_descent(w, dataX, dataY, eta=0.01)
print("the weight vector within g: ", w[:, 0])
# test
Eout = zero_one_cost(pred(w, testX), testY)
print("the Eout(g) on the test set: ", Eout) print("\n20")
w=np.zeros((num_dim,1))
num_data=dataX.shape[0]
for i in range(2000):
i%=num_data
x=dataX[i,:].reshape((1,num_dim))
y=dataY[i,:].reshape((1,1))
w=s_gradient_descent(w,x,y,eta=0.001)
print("the weight vector within g: ", w[:, 0])
# test
Eout = zero_one_cost(pred(w, testX), testY)
print("the Eout(g) on the test set: ", Eout)

运行结果及分析

13-15







18-20

对比18和18.1,可知迭代步长较小时,需要较多迭代次数才能达到较优效果。

机器学习基石笔记:Homework #3 LinReg&LogReg相关习题的更多相关文章

  1. 机器学习基石笔记:Homework #1 PLA&PA相关习题

    原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matpl ...

  2. 机器学习基石笔记:Homework #2 decision stump相关习题

    原文地址:http://www.jianshu.com/p/4bc01760ac20 问题描述 程序实现 17-18 # coding: utf-8 import numpy as np import ...

  3. 机器学习基石笔记:11 Linear Models for Classification、LC vs LinReg vs LogReg、OVA、OVO

    原文地址:https://www.jianshu.com/p/6f86290e70f9 一.二元分类的线性模型 线性回归后的参数值常用于PLA/PA/Logistic Regression的参数初始化 ...

  4. 机器学习基石笔记:Homework #4 Regularization&Validation相关习题

    原文地址:https://www.jianshu.com/p/3f7d4aa6a7cf 问题描述 程序实现 # coding: utf-8 import numpy as np import math ...

  5. 机器学习基石:Homework #0 SVD相关&常用矩阵求导公式

  6. 林轩田机器学习基石笔记1—The Learning Problem

    机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...

  7. 机器学习基石笔记:01 The Learning Problem

    原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给 ...

  8. 机器学习基石笔记:04 Feasibility of Learning

    原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...

  9. 机器学习基石笔记:03 Types of Learning

    原文地址:https://www.jianshu.com/p/86b2a9cef742 一.学习的分类 根据输出空间\(Y\):分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据 ...

随机推荐

  1. JS-MiniUI:百科

    ylbtech-JS-MiniUI:百科 MINIUI是一款优秀的JS前端web框架,提供丰富.强大控件库,能快速开发企业级Web应用软件.该软件以美观精致的界面和快速的页面响应速度获得用户的好评.是 ...

  2. java == 和equals()

    == == 是运算符 :可以使用在基本数据类型变量和引用数据类型变量当中 : 如果比较的是基本数据类型变量,比较两个变量保存的数据是否相等(不一定类型相同) 如果比较的是引用数据类型变量, 比较两个对 ...

  3. computed和watch运用场景

    computed:通过属性计算而得来的属性 1.computed内部的函数在调用时不加(). 2.computed是依赖vm中data的属性变化而变化的,也就是说,当data中的属性发生改变的时候,当 ...

  4. Gradle教程

    Ant和Maven共享在Java市场上相当大的成功.ANT是在2000年发布了第一个版本的工具,它是基于程序编程思想的发展. 后来,人们在 Apache-Ivy的帮助下,网络接受插件和依赖管理的能力有 ...

  5. Java中编写一个完美的equals方法

    首先看下Java语言规范对equals方法的要求: 1,自反性,对于任何非控引用x,x.equals(x)都应该返回true. 2,对称性,对于任何引用x和y,如果x.equals(y)返回true, ...

  6. 马士兵对话京东T6阿里P7(薪水):月薪5万,他为何要离职?

    马士兵大佬你知道吗? 你竟然不知道?你怎么可能不知道!你不知道是不可能的! 记得自己的第一行Java代码,你的Hello World是跟着谁学的吗?我的就是马士兵老师! 马士兵是唯一一个在当时讲课是让 ...

  7. Python中反射的简单应用

    ● 共两个文件:userInfo,reflex.py alex|123456|Manager hezewei|666|Student taibai|2222|Teachar userInfo #!/u ...

  8. sort的排序及使用

    sort() 方法在适当的位置对数组的元素进行排序,并返回数组.数组会按照字符的Unicode进行排序(把数组里面当成字符串处理) 1. 按升序排列: var arr=[1,11,2,22,5,4,0 ...

  9. WPF非UI线程访问网络资源造成页面假死现象

    公司内部一个项目是用WPF作为GUI 访问web接口的形式获取数据, 但是由于数据量比较大,也没做分页,于是就需要一个loading的控件,网上查了很多资料但都比较浅.这里完成需求后,总结一下. 首先 ...

  10. java全栈商业小程序开发

    此次开发只为学习和巩固,第一次学习开发 一.开发前需要了解: 开发框架MVVM.痛点.开源工具.VUE前端框架.微信支付模块.uni-app前端框架.小程序申请.开发工具下载.编写测试小程序.小程序结 ...