【bzoj4710】[Jsoi2011]分特产
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
输入
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
输出
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果 MOD 1,000,000,007 的数值就可以了。
样例输入
5 4
1 3 3 5
样例输出
384835
由于“每个同学都必须至少分得一个特产”这个限制比较难处理,所以我们可以考虑容斥,
用没有限制-至少1个人没分到+至少2个人没分到-... 得到答案。
考虑如果i个人没分到该怎么处理:n个人选出i个不分,方案数为C(n,i);
对于每种特产设有w[i]个,分给(n−i)个同学,允许有人拿不到,方案数为
c(w[i]+n-i-1,n-i-1)
故最终答案为∑(-1)^i * C(n,i) *∑C(w[j]+n-i-1,n-i-1) (0<=i<=n-1,1<=j<=m)
手动算一下
3 2
3 4
则没有限制的有c(3,0)*c(5,2)*C(6,2)=150
至少有一个人没拿到C(3,1)*C(4,1)*C(5,1)=60
至少有二个人没拿到C(3,2)*1*1=3
ans=150-60+3=93
#include <bits/stdc++.h>
#define N 2010
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll c[N][N];
int w[N];
int main()
{
int n , m , i , j;
ll ans = 0 , tmp;
for(i = 0 ; i <= 2000 ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) //M个特产
scanf("%d" , &w[i]);
for(i = 0 ; i < n ; i ++ )
{
tmp = c[n][i];
// cout<<" i is "<<i<<endl;
for(j = 1 ; j <= m ; j ++ )
{
tmp = tmp * c[ w[j] + n - i - 1] [w[j]] % mod;
// cout<<" m iss "<<c[ w[j] + n - i - 1] [w[j]]<<endl;
}
// cout<<i<<" tmp is "<<tmp<<endl;
if(i & 1)
ans = (ans - tmp + mod) % mod;
else
ans = (ans + tmp) % mod;
// cout<<i<<" ans is "<<ans<<endl;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj4710】[Jsoi2011]分特产的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
随机推荐
- TypeError: Cannot read property 'splice' of undefined
splice是删除数组里的项,报这个错证明你点前面那个并不是个数组,仔细一看,还真是数组名称写错了
- Python之网络编程之concurrent.futures模块
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- mysql安装配置和启动
MySQL数据库安装配置和启动 1,下载MySQL 打开MySQL的官网www.mysql.com,发现有一个DOWNLOADS 点击它,进入到MySQL的下载页面,在页面的底部有一个MySQL ...
- 【转】h5页面audio不自动播放问题
1.audio:html5音频标签 <audio loop src="/photo/aa.mp3" id="audio" autoplay preload ...
- JavaWeb面试篇(6)
51.说一说Servlet的生命周期? Servlet有良好的生存期的定义,包括加载和实例化.初始化.处理请求以及服务结束.这个生存期由javax.servlet.Servlet接口的init(),s ...
- 编译caffe-gpu-cuda及cudnn-tar 下载地址
y下载 https://github.com/BVLC/caffe https://github.com/BVLC/caffe/archive/master.zip gcc caffe安装 有2个问题 ...
- SQL基础测试
SQL 测验 结果:20/20 您的回答: 1.SQL 指的是? 您的回答:Structured Query Language 2.哪个 SQL 语句用于从数据库中提取数据? 您的回答:SELECT ...
- #419 Div2 Problem C Karen and Game (贪心 && 暴力)
题目链接:http://codeforces.com/contest/816/problem/C 题意 :给出一个 n*m 的变化后的矩阵,变化前矩阵的元素全是0,变化的规则是选择其中的一行或者一列将 ...
- PID221 / 烦人的幻灯片☆ x
超详细解释!我都被我自己惊呆了! (这个题目意思我缓冲了很久!一定要读懂题!否则做不出来) 题目不懂就多读呀~ 提交你的代码 查看讨论和题解 题目描述 李教授于今天下午做一个非常重要的演讲.不幸的是他 ...
- 自定义springmvc参数解析器
实现spring HandlerMethodArgumentResolver接口 通过使用@JsonArg自定义注解来解析json数据(通过fastjson的jsonPath),支持多个参数(@Req ...