【神经网络与深度学习】基于Windows+Caffe的Minst和CIFAR—10训练过程说明
Minst训练
我的路径:G:\Caffe\Caffe For Windows\examples\mnist
对于新手来说,初步完成环境的配置后,一脸茫然。不知如何跑Demo,有么有!那么接下来的教程就是我们这些新手的福利了。
第一步:如果前面的train_net.cpp编译通过了,那么这个就非常简单。Caffe训练和测试的数据都是需要leveldb格式的,niuzhiheng大牛已经给我们转好了MNIST的数据格式。如下图:
第二步:如上图所示,文件夹下有个get_mnist_leveldb.bat
,双击就可以下载到MNIS的leveldb文件。不能翻墙的,就到:http://download.csdn.net/detail/u012878523/8140305 下载吧。下载完 解压到…\examples\mnist 文件夹下。网络参数可以再lenet_train.prototxt中修改。GPU和CPU的切换在lenet_solver.prototxt中,打开后代码如下所示:
# The training protocol buffer definition
train_net: "lenet_train.prototxt"
# The testing protocol buffer definition
test_net: "lenet_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the Network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "lenet"
# solver mode: CPU or GPU
solver_mode: GPU #两种方式二选一
#solver_mode: CPU
第三步:双击train_lenet。bat就可以训练该网络。每500轮进行一次测试。Tset Score 0是正确率。Test Score 1是测试损失函数值。上两张训练图:
然后准确率的变化:
损失函数值的变化:
每迭代100次输出一次训练比率lr和训练损失函数值loss,模型的参数存储在lenet_iter_10000.solverstate中,然后这个模型就可以应用在新数据上了。
至此,minst的训练demo到此结束。然后试试cifar-10!
CIFAR-10 训练
第一步:数据库的说明:CIFAR-10
60000张 32X32 彩色图像 10类
50000张训练
10000张测试
附上一个的deeplearning的常用数据集下载链接,赶紧默默的收藏吧:
http://deeplearning.net/datasets/
这是binary格式的,所以我们要把它转换成leveldb格式。
第二步:(部分直接复制别人的,因为没看到原作者是谁,所以就不上链接了。)
/examples/cifar10文件夹中有一个 convert_cifar_data.cpp
将他include到MainCaller.cpp中。如下:
然后就编译,博主一次就通过了 ,在bin文件夹里出现convert_cifar_data.exe。
接下来就可以进行格式转换。binary→leveldb。可以在bin文件夹下新建一个input文件夹。将cifar10.binary文件放在input文件夹中,这样转换时就不用写路径了。
然后cmd进入bin文件夹,执行convert_cifar_data.exe后,在output文件夹下有cifar_train_leveldb和cifar_test_leveldb两个文件夹。里面是转化好的leveldb格式数据。
第三步:下面我们要求数据图像的均值编译../../tools/comput_image_mean.cpp
编译成功后,没有出现comput_image_mean.exe。没关系,我们还有maincaller.exe,接下来求mean
cmd进入bin,执行后,在bin文件夹下出现一个mean.binaryproto文件,这就是所需的均值文件。
第四步:训练cifar网络
在…/examples/cifar10文件夹里已经有网络的配置文件,我们只需要将cifar_train_leveldb和cifar_test_leveldb两个文件夹还有mean.binaryproto文件拷到cifar0文件夹下。
修改cifar10_quick_train.prototxt中的source: “cifar-train-leveldb” mean_file: “mean.binaryproto” 和cifar10_quick_test.prototxt中的source: “cifar-test-leveldb” mean_file: “mean.binaryproto”就可以了,
后面再训练就类似于MNIST的训练。写一个train_quick.bat,内容如下:
copy..//..//bin//MainCaller.exe..//..//bin//train_net.exeSETGLOG_logtostderr=1”../../bin/train_net.exe” cifar10_quick_solver.prototxt pause
先编译一遍 train_net.cpp
运行train_quick.bat,结果如下:
备注:
另外,更改cifar*solver.prototxt文件可以使用CPU训练,
solver mode: GPU
solver_mode: CPU
可以看看CPU和GPU训练的差别。
【神经网络与深度学习】基于Windows+Caffe的Minst和CIFAR—10训练过程说明的更多相关文章
- 【神经网络与深度学习】转-caffe安装吐血总结
这周安装了caffe的windows版本和Linux版本,依赖关系太多,如果系统选对了,安装起来很easy,选错了,就会遇见各种坑. 1.操作系统最好使用ubuntu desktop 14.04 64 ...
- 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...
- 【神经网络与深度学习】Caffe部署中的几个train-test-solver-prototxt-deploy等说明
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正 ...
- 【神经网络与深度学习】【Qt开发】【VS开发】从caffe-windows-visual studio2013到Qt5.7使用caffemodel进行分类的移植过程
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] ...
- 【神经网络与深度学习】学习笔记:AlexNet&Imagenet学习笔记
学习笔记:AlexNet&Imagenet学习笔记 ImageNet(http://www.image-net.org)是李菲菲组的图像库,和WordNet 可以结合使用 (毕业于Caltec ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试
[神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...
- 【神经网络与深度学习】【python开发】caffe-windows使能python接口使用draw_net.py绘制网络结构图过程
[神经网络与深度学习][python开发]caffe-windows使能python接口使用draw_net.py绘制网络结构图过程 标签:[神经网络与深度学习] [python开发] 主要是想用py ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
随机推荐
- 创建Windows任务计划定时调用网页执行任务(通过Windows PowerShell的Invoke-WebRequest实现)
前言:项目中使用RoadFlow工作流,设置超时自动提交功能,自动提交功能已有现成的网页可实现(http://127.0.0.1/WorkFlowRun/AutoSubmit),现需创建Windows ...
- 【leetcode】1254. Number of Closed Islands
题目如下: Given a 2D grid consists of 0s (land) and 1s (water). An island is a maximal 4-directionally ...
- head first 设计模式笔记1-策略模式:模拟鸭子
1.第一个设计原则:找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起.该原则几乎是所有设计模式背后的精神所在. 这个原则的另一种思考方式:把会变化的部分取出并封装起来,以 ...
- Apicloud_(接口验证)用户注册头部信息X-APICloud-AppKey生成
接口验证KEY生成规则说明 官方文档: 传送门 "X-APICloud-AppKey"生成规则是基于SHA1()算法生成的 AppKey= SHA1(你的应用ID + 'UZ' + ...
- TCP定时器 之 连接建立定时器
当服务器收到新的syn请求,会回复syn+ack给请求端,若某时间内未收到请求端回复的ack,新建连接定时器超时执行回调,重传syn+ack,当超时超过固定次数时,该连接中止:本文主要分析其初始化流程 ...
- python3笔记二:进制转换与原码反码补码
一:学习内容 进制:二进制.八进制.十进制.十六进制 进制转换 原码.反码.补码 二:进制 二进制 1.二进制:只有0和1,逢2进1 2.举例:0+0=0.0+1=1.1+1=10 3.过程剖析:二进 ...
- Java JDBC 基础
JDBC API 包含以下几个核心部分: 1:JDBC 驱动 2:Connections (连接) 3:Statements (声明) 4:Result Sets (结果集) JDBC: 打开数据库连 ...
- 菜鸟requireJS教程---1、初识requirejs
菜鸟requireJS教程---1.初识requirejs 一.总结 一句话总结: Using a modular script loader like RequireJS will improve ...
- defineProperty
### Object.defineProperty() https://segmentfault.com/a/1190000007434923方法会直接在一个对象上定义一个新属性,或者修改一个已经存在 ...
- golang defer那些坑
defer以下几个特性,使用时需要关注下. 即时的参数传递 调用os.Exit()时defer不会被执行 defer与return的先后顺序 1.即时的参数传递 定义defer时传入的参数,是作为拷贝 ...