Retrofitting Analysis
Retrofitting Analysis
To figure out the process of retrofitting[1] objective updating, we do the following math.
Forward Derivation
\[
\psi(Q) = \sum_{i=1}^{n}\left[ \alpha_i||q_i-\hat{q_i}||^2 + \sum\beta||q_i-q_j||^2 \right] \\
\frac{\partial \psi(Q)}{\partial q_i} = \alpha_i(q_i-\hat{q_i}) + \sum\beta(q_i-q_j) = 0 \\
(\alpha_i+\sum\beta_{ij})q_i -\alpha_i\hat{q_i} -\sum\beta_{ij}q_j = 0 \\
q_i = \frac{\sum\beta_{ij}q_j+\alpha_i\hat{q_i}}{\sum\beta_{ij}+\alpha_i}
\]
Backward Derivation
This is how I understood this updating equation.
In the paper[1], it has mentioned "We take the first derivative of \(\psi\) with respect to one qi vector, and by equating it to zero", hence we get follow idea:
\[
\frac{\partial\psi(Q)}{\partial q_i} = 0
\]
And,
\[
q_i = \frac{\sum\beta_{ij}q_j+\alpha_i\hat{q_i}}{\sum\beta_{ij}+\alpha_i} \\
\alpha_iq_i - \alpha_i\hat{q_j} + \sum\beta_{ij}q_i - \sum\beta q_j = 0 \\
\alpha_i(q_i-\hat{q_j})+ \sum\beta_{ij}(q_i-q_j) = 0
\]
Apparently,
\[
\frac{\partial\psi(Q)}{\partial q_i} = \alpha_i(q_i-\hat{q_j})+ \sum\beta_{ij}(q_i-q_j) = 0
\]
Reference
Faruqui M, Dodge J, Jauhar S K, et al. Retrofitting Word Vectors to Semantic Lexicons[J]. ACL, 2015.
Retrofitting Analysis的更多相关文章
- IJCAI 2019 Analysis
IJCAI 2019 Analysis 检索不到论文的关键词:retrofitting word embedding Getting in Shape: Word Embedding SubSpace ...
- Why many EEG researchers choose only midline electrodes for data analysis EEG分析为何多用中轴线电极
Source: Research gate Stafford Michahial EEG is a very low frequency.. and literature will give us t ...
- Automated Memory Analysis
catalogue . 静态分析.动态分析.内存镜像分析对比 . Memory Analysis Approach . volatility: An advanced memory forensics ...
- Sentiment Analysis resources
Wikipedia: Sentiment analysis (also known as opinion mining) refers to the use of natural language p ...
- Call for Papers IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM)
IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 In ...
- 主成分分析(principal components analysis, PCA)
原理 计算方法 主要性质 有关统计量 主成分个数的选取 ------------------------------------------------------------------------ ...
- 《利用Python进行数据分析: Python for Data Analysis 》学习随笔
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...
- Python for Data Analysis
Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字 ...
- 使用SQL Server Analysis Services数据挖掘的关联规则实现商品推荐功能(七)
假如你有一个购物类的网站,那么你如何给你的客户来推荐产品呢?这个功能在很多电商类网站都有,那么,通过SQL Server Analysis Services的数据挖掘功能,你也可以轻松的来构建类似的功 ...
随机推荐
- 实体类与数据库字段不匹配问题,java.sql.SQLSyntaxErrorException: Unknown column 'xxx' in 'field list'
控制台报错 ### Error querying database. Cause: java.sql.SQLSyntaxErrorException: Unknown column 'user_nam ...
- 忘记oracle的sys用户密码如何修改以及Oracle 11g 默认用户名和密码
忘记除SYS.SYSTEM用户之外的用户的登录密码 CONN SYS/PASS_WORD AS SYSDBA; --用SYS (或SYSTEM)用户登录 ALTER USER user_name ID ...
- c# 6.0、c#7.0、c#8.0新特性
官方: https://docs.microsoft.com/zh-cn/dotnet/articles/csharp/whats-new/csharp-6 https://docs.microsof ...
- Codeforces Round #581 (Div. 2) B. Mislove Has Lost an Array (贪心)
B. Mislove Has Lost an Array time limit per test1 second memory limit per test256 megabytes inputsta ...
- Summer training round2 #1
A:水 B:求两个三角形之间的位置关系:相交 相离 内含 ①用三个点是否在三角形内外判断 计算MA*MB.MB*MC.MC*MA的大小 若这三个值同号,那么在三角形的内部,异号在外部 #incl ...
- centos7安装kong和kong-dashboard
1.安装Kong yum install -y https://kong.bintray.com/kong-community-edition-rpm/centos/7/kong-community- ...
- 树上倍增求LCA详解
LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...
- 微信小程序 点击事件 传递参数
wxml: data-参数名="值" bindtap="函数名" <view class="buy-button {{cap_select == ...
- 在JavaScript中,++在前和++在后有什么区别
一.++可以与输出语句写在一起,++写在变量前和写在变量后不是一个意思++ i 和 i ++ 区别在于运算顺序和结合方向. 在JavaScript中有两种自加运算,其运算符均为 ++,功能为将运算符自 ...
- HDU - 6582 Path (最短路+最小割)
题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...