60第K个排列
题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:给定 n 的范围是 [1, 9]。给定 k 的范围是[1, n!]。
来源: https://leetcode-cn.com/problems/permutation-sequence/
法一:自己的代码 耗时很短,利用python自带的阶乘函数计算耗时会更短
思路:转化为一个纯数学的问题,关键是要把每种情况都考虑到,特别是除n!后是整数的情况,举例的时候就要把每种情况都枚举到,编程才不会出错
import math
class Solution:
def getPermutation(self, n: int, k: int):
# 自定义阶乘函数
def n_factorial(x):
if x == 0:
return 1
else:
return x * n_factorial(x-1)
nums = [i+1 for i in range(n)]
result = ''
while n > 0:
n = n - 1
# 通过观察数据可以看出,假如输入是(4,9),则说明以1开头的有3!个,以2开头的有3!个,
# 所以用9除以3的阶乘是1.5,1,5向上取整为2,即nums中的第二个数2是结果中的第一个数,
# 再用9减去6为3表示从2开始的组别中找第三个数,
res = k / n_factorial(n)
res_up = math.ceil(res)
# 注意这里向下取整必须是向上取整后减1,这是因为比如输入的是(4,6),则6除3!为1,1-1=0,所以不可直接向下取整
res_down = res_up - 1
k = k - res_down * n_factorial(n)
result = result + str(nums[res_up-1])
del nums[res_up-1]
print('-'* 20)
print('k', k)
# print(res)
print(res_up)
# print(res_down)
return result
if __name__ == "__main__":
duixiang = Solution()
a = duixiang.getPermutation(4,9)
print(a)
法二:自己的代码 利用回溯,但是超时,超时是因为没有用continue,每个分支都要检查一遍
class Solution:
def getPermutation(self, n: int, k: int):
nums = [i+1 for i in range(n)]
global count,result
count = 0
def backtrack(a='', nums=nums, ):
global count,result
# print('k',count)
if count == k:
return
if len(a) == n:
count += 1
# print('count', count)
if count == k:
result = a
# exit()
# return count
for i,j in enumerate(nums):
r = nums.copy()
del r[i]
# print('ttt',count)
# sign,result = backtrack(a+str(j), r)
backtrack(a+str(j), r)
backtrack()
return result
改进后的不会超时,注意这里return的用法,非常巧妙
class Solution:
def getPermutation(self, n: int, k: int):
nums = [i+1 for i in range(n)]
from1to9_factorial = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
def backtrack(a='', nums=nums,k = k ):
# 一旦满足条件立即逐层返回a,结束所有函数
if len(a) == n:
return a
t = from1to9_factorial[len(nums) - 1]
for i,j in enumerate(nums):
if k > t:
# 执行剪枝操作,如果大于t了,就结束本次循环
k = k - t
continue
# r中是下次for循环要遍历的数
r = nums.copy()
del r[i]
# 这里必须用return,避免了定义全局变量来解决问题
return backtrack(a+str(j), r, k)
return backtrack()
if __name__ == "__main__":
duixiang = Solution()
a = duixiang.getPermutation(4,10)
print(a)
60第K个排列的更多相关文章
- Java实现 LeetCode 60 第k个排列
60. 第k个排列 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &q ...
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode 60. 第k个排列(Permutation Sequence)
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "1 ...
- 力扣60——第k个排列
原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...
- 算法:60.第k个排列
解答参考:https://blog.csdn.net/lqcsp/article/details/23322951 题目链接:https://leetcode-cn.com/problems/perm ...
- 代码题(45)— 下一个排列、第k个排列
1.31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只 ...
- LeetCode:第K个排列【60】
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...
- LeetCode(60): 第k个排列
Medium! 题目描述: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
随机推荐
- python学习-Python简介以及运行环境
Python语言是全世界几百种编程语言中的一个,诞生时间不算长,但是现在已经成为很热门的语言,近几年在TIOBE排行榜一直呈现上升趋势,截止19年2月,python已经超过C++成为排名第三的语言. ...
- height 自适应问题
何为高度自适应? 高度自适应就是高度能跟随浏览器窗口的大小改变而改变,典型的运用在一些后台界面中上面一栏高度固定用作菜单栏或导航栏,下面一栏高度自适应用于显示内容.高度自适应不像宽度自适应那样简单,在 ...
- mysql之InnoDb引擎与MyISAM引擎对比
InnoDb引擎 支持ACID的事务,支持事务的四种隔离级别: 支持行级锁及外键约束:因此可以支持写并发: 不存储总行数: 一个InnoDb引擎存储在一个文件空间(共享表空间,表大小不受操作系统控制, ...
- MySQL user表初始化
默认安装的MySQL数据库,无法远程连接. 登录MySQL之后,运行 SELECT user,host from mysql.user; 如果只有一条记录,说明是这个原因. 将下面的脚本保存成user ...
- ToolStrip 选中某一项打勾
(sender as ToolStripMenuItem).Checked = !(sender as ToolStripMenuItem).Checked;
- confluence 附件docx文件 乱码处理
服务器安装字体库 Fontconfig是一个用于配置和自定义字体访问的库 yum -y install fontconfig 拷贝需要的字体文件 fonts.zip(或自己电脑中的字体文件c:/Win ...
- (转载)rabbitmq与springboot的安装与集成
原文地址:https://segmentfault.com/a/1190000016991529 一.前言 RabbitMQ是一个开源的消息代理软件(面向消息的中间件),它的核心作用就是创建消息队列, ...
- CodeForces 349B--Color the Fence(贪心)
B. Color the Fence time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- latex参考文献中作者名字含有特殊字符怎么办
- POI 生成excel
POI生成原生Excel-工具类 https://www.jianshu.com/p/2dfe7fe7d02e JAVA poi 帮助类 https://www.cnblogs.com/Ca ...