树上独立集数量 树型DP
题目描述:
对于一棵树,独立集是指两两互不相邻的节点构成的集合。例如,图1有5个不同的独立集(1个双点集合、3个单点集合、1个空集),图2有14个不同的独立集,图3有5536个不同的独立集。
输入:
第一行一个正整数n,表示点的数量。n最大为100000。
接下来n-1行,有两个整数a、b,表示编号为a、b的两个点之间有一条边,其中a、b大于等于1,小于等于n。
17
1 2
1 3
2 4
2 5
3 6
3 7
5 8
5 9
7 10
7 11
8 12
8 13
10 14
10 15
12 16
15 17
输出:
输出一行,包含一个整数,表示独立集的数量。由于这个数很大,你只需要输出这个数除以10081的余数。
分析:
这是一道树形DP。设f[i][0]表示在选i个节点的独集数,f[i][1]表示不选第i个节点的独集数。
很明显,每一个节点的f都是有它的子节点得到的。
如果选了第i个节点,那么它的子节点全部不选。所以,f[i][0]就等于它的子节点f[j][1]的乘积。
反之,不选第i个节点,那么它的子节点可以选也可以不选,f[i][1]等于它的子节点(f[j][0] +f[j][1])的乘积。
边就用奇怪的方法维护就行了(不要告诉我你不会前向新或边集数组)。
#include<cstdio>
#include<cstring>
#include<algorithm>
const int mo=;
int n,a[][],g[],f[][];
bool bz[];
void qsort1(int l, int r)
{
int i=l;
int j=r;
int x;
int t;
x=a[(l+r)/][];
while (i<=j)
{
while(a[i][]<x) i++; while(a[j][]>x) j--;
if(i<=j)
{
t=a[j][];
a[j][]=a[i][];
a[i][]=t;
t=a[j][];
a[j][]=a[i][];
a[i][]=t;
j--;
i++;
}
}
if (l<j) qsort1(l,j);
if (r>i) qsort1(i,r);
}
void dfs(int x)
{
int z1,z2,z=g[x],l=;
while (a[z][]==x)
{
if (bz[a[z][]]==false)
{
l=;
bz[a[z][]]=true;
dfs(a[z][]);
f[x][]=(f[x][]*f[a[z][]][])%mo;
if (z==g[x])
{
z1=f[a[z][]][];
z2=f[a[z][]][];
}
else
{
z1=(z1*f[a[z][]][]+z1*f[a[z][]][])%mo;
z2=(z2*f[a[z][]][]+z2*f[a[z][]][])%mo;
}
}
z++;
}
if (l==)
{
f[x][]=(z1+z2)%mo;
}
}
int main()
{
int i,j,k;
scanf("%d",&n);
int zl=;
for (i=;i<=n-;i++)
{
int x,y;
scanf("%d%d",&x,&y);
zl++;
a[zl][]=x;
a[zl][]=y;
zl++;
a[zl][]=y;
a[zl][]=x;
}
for (i=;i<=n;i++)
{
f[i][]=;
f[i][]=;
}
qsort1(,zl);
int z=;
for (i=;i<=zl;i++)
{
if (a[z][]!=a[i][])
{
g[a[z][]]=z;
z=i;
}
}
g[a[z][]]=z;
bz[]=true;
dfs();
printf("%d",(f[][]+f[][])%mo);
}
树上独立集数量 树型DP的更多相关文章
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
- 【POJ 3140】 Contestants Division(树型dp)
id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS Memory Limit: 65536K Tot ...
- HDU 5905 Black White Tree(树型DP)
题目链接 Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...
- HDU_1561_The more, The Better_树型dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1561 The more, The Better Time Limit: 6000/2000 MS (J ...
- ACM之路(13)—— 树型dp
最近刷了一套(5题)的树型dp题目:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=116767#overview,算是入了个门,做下总结. ...
- 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
随机推荐
- C++ Map实践
实践如下: #include <iostream> #include <map> #include <string> #include <typeinfo&g ...
- MySQL查看数据表的创建时间和最后修改时间
如何MySQL中一个数据表的创建时间和最后修改时间呢? 可以通过查询information_schema.TABLES 表得到信息. 例如 mysql> SELECT * FROM `infor ...
- BeanDefinition 实例
BeanDefinition BeanDefinition /** * BeanDefinition 用于描述一个 bean 实例,包括属性值.构造参数和补充信息. */ public interfa ...
- Fragment 的 replace 和 add 方法的区别?
Fragment 本身并没有 replace 和 add 方法,这里的理解应该为使用 FragmentManager 的 replace 和 add 两种方法切换 Fragment 时有什么不同.我们 ...
- IP冲突如何把冲突的IP挤下去
把冲突IP挤下去的方法: ①进入网络和共享中心>本地连接>禁用. ②进入网络和共享中心>更改适配器设置>双击被禁用的连接,自动重新连接即可.
- 阶段3 3.SpringMVC·_01.SpringMVC概述及入门案例_06.入门案例的流程总结
配置了load-on-startup等于1 表示启动了服务器就会去创建DispatcherServlet 如果不配置load-on-startup为1 那么第一次发送请求才会去创建Dispatcher ...
- 关系/对象映射 多对多关系(@ManyToMany 注释)【重新认识】
old: @ManyToMany 注释:表示此类是多对多关系的一边, mappedBy 属性定义了此类为双向关系的维护端, 注意:mappedBy 属性的值为此关系的另一端的属性名. 例如,在Stud ...
- Java中File类的基本用法
File类的基本用法 java.io.File类:代表文件和目录.在开发中,读取文件.生成文件.删除文件.修改文件的属性时经常会用到此类. File类的常用构造方法:public File(Strin ...
- 【Qt开发】QString与数字类型的转换(不同进制)
把QString转换为 double类型 方法1.QString str="123.45"; double val=str.toDouble(); //val=123.45 方法2 ...
- Java网络爬虫
一.前言 首先我们把准备工作做好:IDEA 2019.1.JDK1.8.Maven3.5 Jsoup的Maven依赖: <dependency> <groupId>org.js ...