【leetcode】877. Stone Game
题目如下:
Alex and Lee play a game with piles of stones. There are an even number of piles arranged in a row, and each pile has a positive integer number of stones
piles[i].The objective of the game is to end with the most stones. The total number of stones is odd, so there are no ties.
Alex and Lee take turns, with Alex starting first. Each turn, a player takes the entire pile of stones from either the beginning or the end of the row. This continues until there are no more piles left, at which point the person with the most stones wins.
Assuming Alex and Lee play optimally, return
Trueif and only if Alex wins the game.Example 1:
Input: [5,3,4,5]
Output: true
Explanation:
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true.Note:
2 <= piles.length <= 500piles.lengthis even.1 <= piles[i] <= 500sum(piles)is odd.
解题思路:这类博弈问题是我的弱项,本题我参考了很多高手的答案才得到动态规划的状态转移方程。记dp[i][j]为piles[i][j]区间内先手可以赢后手的点数,假设当前dp[i][j]是Alex先手,所有Alex可以选择的石头是piles[i]或者piles[j],如果Alex选择是piles[i],那么区间piles[i+1][j]就对应Lee的先手,dp[i+1][j] 对应着Lee赢Alex的点数;当然如果Alex选择的是piles[j],其实也是一样的,只不过下一手变成piles[i][j+1]。综合这两种情况,可以得出 dp[i][j] = max(piles[i] - dp[i+1][j] , piles[j] - dp[i][j-1]) 。
代码如下:
class Solution(object):
def stoneGame(self, piles):
"""
:type piles: List[int]
:rtype: bool
"""
dp = []
for i in range(len(piles)):
dp.append([0] * len(piles))
dp[i][i] = piles[i] # 这里的计算逻辑是j为inx,i为每一段石头的个数
for i in range(1,len(dp)):
for j in range(len(dp) - i):
dp[j][j+i] = max(piles[j] - dp[j+1][j+i], piles[j+i] - dp[j][j+i-1])
return dp[0][-1] > 0
【leetcode】877. Stone Game的更多相关文章
- 【LeetCode】877. Stone Game 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学 双函数 单函数 + 记忆化递归 动态规划 日期 ...
- 【leetcode】486. Predict the Winner
题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java
[LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...
- 【Leetcode】Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
- 27. Remove Element【leetcode】
27. Remove Element[leetcode] Given an array and a value, remove all instances of that value in place ...
- 【刷题】【LeetCode】007-整数反转-easy
[刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接-空 007-整数反转 方法: 弹出和推入数字 & 溢出前进行检查 思路: 我们可以一次构建反转整数的一位 ...
- 【刷题】【LeetCode】000-十大经典排序算法
[刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接 000-十大经典排序算法
随机推荐
- 5个用/不用GraphQL的理由
我在如何使用Gatsby建立博客 / How to build a blog with Gatsby这篇文章中提过GraphQL在Gatsby中的应用.总的来讲,它是一个新潮的技术,在适宜的使用场景威 ...
- PHP文件和目录操作
目录操作 创建目录:mkdir(目录地址, 权限, 是否递归创建=false); 删除目录:rmdir(目录地址);(仅仅可以删除空目录,不支持递归删除) 移动(改名):rename(旧地址, 新地址 ...
- such as, for example, include和contain
such as 后接动词,通常用动名词,有时也可用动词原形 for example 后接动词,用动名词 include vt. 包含,包括 后接动词,用动名词 英英: If one thing inc ...
- flex 数字上标
以A的3次方为例,我们输入以下代码: /** * 部分代码参考Adobe文档: * http://help.adobe.com/zh_CN/AS3LCR/Flash_10.0/flash/text/e ...
- pycharm中git配置(coding.net为例)
1.在coding.net注册一个账号 2.登陆coding.net 3.新建项目->输入项目名称.项目描述->初始化仓库选择readme.md并且添加一个appachev2的开源许可证- ...
- pom.xml文件设置
一个相对完整的maven配置文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns= ...
- 手把手教您在 Windows Server 2019 上使用 Docker
配置 Windows 功能 要运行容器,您还需要启用容器功能 Install-WindowsFeature -Name Containers 在 Window Server 2019 上安装 Dock ...
- .net任务调度平台 Dyd.BaseService.TaskManager
国外网速慢,最新版本迁移至http://git.oschina.net/chejiangyi/Dyd.BaseService.TaskManager .net 简单任务调度平台 用于.net dll, ...
- ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock'
今天执行mysql操作的时候出现了错误:ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run ...
- C# 捕获全局异常
一.在Winform程序中捕获全局异常 在winfrom中我们需要了解Application对象中的两个事件 ①Application.ThreadException 事件--当UI线程中某个异常未被 ...