在从事电商做频道运营时,每到关键时间节点,大促前,季度末等等,我们要做的一件事情就是品牌池打分,更新所有店铺的等级。例如,所以的商户分入SKA,KA,普通店铺,新店铺这4个级别,对于不同级别的商户,会给予不同程度的流量扶持或广告策略。通常来讲,在一定时间段内,评估的维度可以有:UV,收订金额,好评率,销退金额,广告位点击率,转化率,pc端流量、手机端流量、客单价......等n多个维度,那么如何在这n多个维度中找到一种算法,来将我们的品牌划分到4个级别中呢?今天所讨论的K-means聚类算法是其中一种,基于某电商频道296个品牌的周销量真实数据,我们来进行品牌池划分。

首先, K-means聚类算法可以描述为如下几步:

1、随机选取K个质心(centroids);

2、计算每个数据点距离K个质心的距离,选择距离最小的一个质心作为该数据点的所属组。例如,某数据点距离#3质心最近,那么它就属于#3组。

3、更新质心的坐标,将每个组的数据点坐标相加求平均值,得出新的质心位置并更新。

4、重复第二和第三步n次。

其中,K和n是提前指定的。

为了将K-means运行过程可视化,我们只取296的品牌的2个维度:UV与收订金额。主控代码如下:

%% ================= Part 1: load data ====================
fprintf('load parameters.\n\n');
pkg load io;
tmp = xlsread('data.xlsx');
id=tmp(:,1);
X=tmp(:,2:3); %% =================== Part 2: set parameters ======================
K = 4;
max_iters = 10; %% =================== Part 3: K-Means Clustering ======================
fprintf('\nRunning K-Means clustering on example dataset.\n\n');
initial_centroids = kMeansInitCentroids(X,K);
% Run K-Means algorithm. The 'true' at the end tells our function to plot
% the progress of K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters, true);
fprintf('\nK-Means Done.\n\n');

K-Means Clustering Algorithm核心代码:

function [centroids, idx] = runkMeans(X, initial_centroids, ...
max_iters, plot_progress)
[m n] = size(X);
K = size(initial_centroids, 1);
centroids = initial_centroids;
previous_centroids = centroids;
idx = zeros(m, 1); % Run K-Means
for i=1:max_iters % Output progress
fprintf('K-Means iteration %d/%d...\n', i, max_iters);
if exist('OCTAVE_VERSION')
fflush(stdout);
end % For each example in X, assign it to the closest centroid
idx = findClosestCentroids(X, centroids); % Given the memberships, compute new centroids
centroids = computeCentroids(X, idx, K);
end
end

选择最近质心的算法:

function idx = findClosestCentroids(X, centroids)
K = size(centroids, 1);
idx = zeros(size(X,1), 1);
m = size(X,1); for(i = 1:m)
distance = -1;
index = -1;
for(j=1:K)
e = X(i,:)-centroids(j,:);
d_tmp = e*e';
if(distance == -1)
distance = d_tmp;
index = j;
else
if (d_tmp<distance)
distance = d_tmp;
index = j;
endif
endif
endfor
idx(i) = index;
endfor
end

重新计算质心及初始化质心的算法:

function centroids = computeCentroids(X, idx, K)
[m n] = size(X);
centroids = zeros(K, n); num = zeros(K,1); for(i = 1:m)
c = idx(i,:);
centroids(c,:) += X(i,:);
num(c,:)++;
endfor centroids = centroids./num; function centroids = kMeansInitCentroids(X, K)
centroids = zeros(K, size(X, 2));
randidx = randperm(size(X, 1));
centroids = X(randidx(1:K), :);
end

经过十次迭代后,分组的结果如下:

在我本地的原始数据表格中,共有约20个维度来衡量每个店铺的运行情况,根据K-means聚类算法可以很轻松的将它们归类,虽然无法将其进行可视化操作,但原理与二维K-means完全相同。

基于K-means Clustering聚类算法对电商商户进行级别划分(含Octave仿真)的更多相关文章

  1. 项目实战2—实现基于LVS负载均衡集群的电商网站架构

    负载均衡集群企业级应用实战-LVS 实现基于LVS负载均衡集群的电商网站架构 背景:随着业务的发展,网站的访问量越来越大,网站访问量已经从原来的1000QPS,变为3000QPS,网站已经不堪重负,响 ...

  2. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  3. 实现基于LVS负载均衡集群的电商网站架构

    背景 上一期我们搭建了小米网站,随着业务的发展,网站的访问量越来越大,网站访问量已经从原来的1000QPS,变为3000QPS,网站已经不堪重负,响应缓慢,面对此场景,单纯靠单台LNMP的架构已经无法 ...

  4. 基于rabbitMQ 消息延时队列方案 模拟电商超时未支付订单处理场景

    前言 传统处理超时订单 采取定时任务轮训数据库订单,并且批量处理.其弊端也是显而易见的:对服务器.数据库性会有很大的要求,并且当处理大量订单起来会很力不从心,而且实时性也不是特别好 当然传统的手法还可 ...

  5. 各类聚类(clustering)算法初探

    1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组 ...

  6. 简单易学的机器学习算法——基于密度的聚类算法DBSCAN

    一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...

  7. 机器学习:Python实现聚类算法(三)之总结

    考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作 ...

  8. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  9. 密度峰值聚类算法(DPC)

    密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(cl ...

随机推荐

  1. [常用类]StringBuffer 类,以及 StringBuilder 类

    线程安全,可变的字符序列. 字符串缓冲区就像一个String ,但可以修改. 在任何时间点,它包含一些特定的字符序列,但可以通过某些方法调用来更改序列的长度和内容. 字符串缓冲区可以安全地被多个线程使 ...

  2. Codeforces - 1198D - Rectangle Painting 1 - dp

    https://codeforces.com/contest/1198/problem/D 原来是dp的思路,而且是每次切成两半向下递归.好像在哪里见过类似的,貌似是紫书的样子. 再想想好像就很显然的 ...

  3. docker私有仓库部署

    首先科普docker几种“仓库”概念,可分为:本地镜像,本地仓库,公有仓库(docker hub) 本地镜像:在把java程序打包成镜像,输出的镜像的位置就是本地镜像 公有仓库:一个叫docker h ...

  4. 搜索(BFS)---最短单词路径

    最短单词路径 127. Word Ladder (Medium) Input: beginWord = "hit", endWord = "cog", word ...

  5. Js中className的用法

    className可以用来改变标签元素的css类选择器,从而改变元素的样式 举个栗子 一个简单的无序列表,点击button之前ul的样式为uhh1 点击button后,调用check函数中的class ...

  6. 获取请求头中User-Agent工具类

    public class AgentUserKit { private static String pattern = "^Mozilla/\\d\\.\\d\\s+\\(+.+?\\)&q ...

  7. centos下通过conda安装pytorch

    一.安装anaconda anaconda安装简单,只要确定自己的系统即可,具体安装请参考这里 二.确定自己的系统版本 我的是centos cat /etc/redhat-release 查看linu ...

  8. 09.Linux系统由于不正常关机导致的分区问题

    问题:Error:UNEXPECTED INCONSISTENCY: RUN fsck MANUALLY Give root password for maintenance ------------ ...

  9. Linux性能优化从入门到实战:06 CPU篇:快速定位CPU瓶颈

    CPU性能指标      (1)CPU使用率:1) 用户态CPU使用率(包括用户态 user 和低优先级用户态 nice).2) 系统CPU使用率.3) 等待 I/O 的CPU使用率.4) 软中断和硬 ...

  10. [AHOI2008]紧急集合 / 聚会(LCA)

    [AHOI2008]紧急集合 / 聚会 题目描述 欢乐岛上有个非常好玩的游戏,叫做"紧急集合".在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通 ...