传送门

挺有意思的一道题

暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分

然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向量\(i\),假如前面所有向量和他的内积为\(1\),那么所有内积之和应该要和\(i-1\)模\(2\)同余,所以如果某个\(i\)不满足这个条件,就可以\(O(nd)\)的找出前面和他内积为\(0\)的向量.而内积之和可以看成当前向量和前面所有向量之和的内积,所以维护好前面向量的和,每次前缀和的当前的内积,复杂度为\(O(nd)\)

然后\(k=3\),内积不为\(0\),则可能为\(1,2\),然后可以发现\(1,2\)的平方模\(3\)是\(1\),那么判断条件就是前面内积平方和是否和\(i-1\)模\(3\)同余.前面内积平方和就是$$\sum_{j}(\sum_{k=1}{d}a_{i,k}a_{j,k})2$$$$\sum_{j}\sum_{k=1}{d}\sum_{l=1}{d}a_{i,k}a_{j,k}a_{i,l}a_{j,l}$$$$\sum_{k=1}{d}\sum_{l=1}{d}a_{i,k}a_{i,l}\sum_{j}a_{j,k}a_{j,l}$$

维护后面那个前缀和就行了

注意可能会出现所有内积之和和\(i-1\)模\(k\)同余,那么我们需要把序列随机打乱后多做几遍

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define il inline using namespace std;
const int N=1e5+10,M=100+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,d,kk,p[N],a[N][M];
int b[M];
int ck(int i)
{
int sm=0;
for(int k=1;k<=d;++k) sm=(sm+a[i][k]*b[k])%kk;
return sm;
}
int c[M][M];
int ckk(int i)
{
int sm=0;
for(int k=1;k<=d;++k)
for(int l=1;l<=d;++l)
sm=(sm+a[i][k]*a[i][l]*c[k][l])%kk;
return sm;
} int main()
{
n=rd(),d=rd(),kk=rd();
for(int i=1;i<=n;++i) p[i]=i;
for(int i=1;i<=n;++i)
for(int j=1;j<=d;++j)
a[i][j]=rd()%kk;
int Q=5;
while(Q--)
{
random_shuffle(p+1,p+n+1);
if(kk==2) memset(b,0,sizeof(b));
else memset(c,0,sizeof(c));
for(int i=1;i<=n;++i)
{
if((kk==2?ck(p[i]):ckk(p[i]))!=(i-1)%kk)
{
for(int j=1;j<i;++j)
{
int sm=0;
for(int k=1;k<=d;++k) sm=(sm+a[p[i]][k]*a[p[j]][k])%kk;
if(!sm)
{
int x=min(p[i],p[j]),y=max(p[i],p[j]);
printf("%d %d\n",x,y);
return 0;
}
}
}
if(kk==2)
{
for(int k=1;k<=d;++k) b[k]=(b[k]+a[p[i]][k])%kk;
}
else
{
for(int k=1;k<=d;++k)
for(int l=1;l<=d;++l)
c[k][l]=(c[k][l]+a[p[i]][k]*a[p[i]][l])%kk;
}
}
}
puts("-1 -1");
return 0;
}

luogu P1224 [NOI2013]向量内积的更多相关文章

  1. P1224 [NOI2013]向量内积

    传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...

  2. 洛谷 P1224 - [NOI2013] 向量内积(随机化)

    洛谷题面传送门 一道很神的随机化. 首先由于我们要求向量点乘 \(\bmod k\) 的值,因此我们可以将所有 \(x_{i,j}\) 都模上 \(k\),显然该操作不影响结果正确性. 注意到这里的 ...

  3. 【fake题解】[NOI2013]向量内积

    [fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...

  4. [Noi2013]向量内积

    来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...

  5. 3243: [Noi2013]向量内积 - BZOJ

    Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...

  6. 【uoj121】 NOI2013—向量内积

    http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T ...

  7. bzoj 3243: [Noi2013]向量内积

    Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...

  8. BZOJ3243/UOJ121 [Noi2013]向量内积

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. BZOJ3243 NOI2013向量内积(随机化)

    考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...

随机推荐

  1. BZOJ 4289: PA2012 Tax Dijkstra + 查分

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  2. xshell的快捷键

    https://blog.csdn.net/hellozpc/article/details/46753575

  3. nginx报错 nginx: [alert] kill(25903, 1) failed (3: No such process)

    当nginx 中报错 时 nginx报错 nginx: [alert] kill(25903, 1) failed (3: No such process) 通过在nginx/sbin,目录下 运行命 ...

  4. [LeetCode]-DataBase-Customers Who Never Order

    Suppose that a website contains two tables, the Customers table and the Orders table. Write a SQL qu ...

  5. 从三十而立的迷茫,到30K

    很标题党的标题,但是希望分享一下自己的经历,一份有点儿不寻常的经历. 12年创业,到17年末,举步维艰,没有项目,公司只剩下两个人,负债,现实给我这个每见过什么市面,却自命不凡的人狠狠的一个耳光.加上 ...

  6. chrome 调试

    https://developers.google.com/web/tools/chrome-devtools/javascript/step-code step over next function ...

  7. scss 用法 及 es6 用法讲解

    scss 用法的准备工作,下载 考拉 编译工具 且目录的名字一定不能出现中文,哪里都不能出现中文,否则就会报错 es6 用法 let 和 const  let  声明变量的方式 在 {} 代码块里面才 ...

  8. 微信小程序 导航(a 连接)自定义组件

    导航:navigator 组件 组件上的属性: target:跳到其他小程序( 默认是当前小程序 ),当属性值为 miniProgram 时,跳到别的小程序(如果要跳到别的小程序,需要填写 appid ...

  9. 新年春节EDM邮件内容设计案例分享

    春节自古以来都是中国最重要的节日.随着中国的发展,中国的春节在世界上都已受到越来越多人的关注,有许多国家和地区都将春节定为法定假日.与此同时,许多品牌营销商也选择在这个时候为中国客户发送马年新年邮件, ...

  10. Unity Mathf And Transform Compent(一)

    Mathf类部分变量 辐射到度的转化函数,能够将弧度转化成度. Abs 能够求出绝对值 Atan 求出正切值x/y的弧度 Transform 组件中带有local 以父物体为坐标原点 global以世 ...