传送门。

题解:


我果然是不擅长分类讨论,心态被搞崩了。

注意到\(m<=n-2\),意味着除了1以外的位置不可能被加到a[1]两遍。

先考虑个大概:

考虑若存在\(x,x-1,…,2\)(有序)这样的,且1要么不出现,要么出现在2的左边,那么\(a[1]=\sum_{i=1}^x a[i]\)。

同样,若存在\(y,y+1,…,n\),且1要么不出现,要么出现在n的左边,那么\(a[1]=a[1]+\sum_{i=y}^n a[i]\)。

开始讨论:

1.1没有出现,直接枚举x,求出最大的y的满足\(sum>=K\),现在大概要求x要恰好,y要至少。

至少好算,恰好的话考虑用至少x减去至少x+1。

2.1出现了,1的右边只有2,,n要么不出现,要么出现在1的左边,注意这种情况下\(y->n\)的和依然会被加进a[1],同样枚举x,求出最大的y,然后我们可以列出一个限制树,若\(j\)必须在\(i\)的左边,\(link(i,j)\),根据CTS2019氪金手游那题,概率是\(\prod{1 \over siz}\),乘上总方案数便是可行的方案数。

3.把上种情况的2、n互换,求法类似。

4.1出现了,2和n都在1的右边,注意这种情况\(a[1]\)会被加两遍,同样枚举x,求最大的y,然后列出限制树,发现并不是外向树,有一条内向边,那么直接把这条边容斥即可。

Code:


#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std; const int mo = 998244353; ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
} const int N = 2e5 + 5; int T, n, m, K;
ll a[N]; ll fac[N], nf[N], ni[N]; ll C(int n, int m) {
return n < m || n < 0 || m < 0 ? 0 : fac[n] * nf[m] % mo * nf[n - m] % mo;
} ll P(int n, int m) {
return n < m || n < 0 || m < 0 ? 0 : fac[n] * nf[n - m] % mo;
} ll p[N], q[N]; ll ans; ll ca1(int x, int z) {
return (x + z <= m) ? (C(m, x) * C(m - x, z) % mo * P(n - 1 - x - z, m - x - z) % mo) : 0;
}
void calc1() {
int y = n + 1;
fd(x, m + 1, 1) {
while(y > 1 && p[x] + q[y] < K) y --;
if(p[x] + q[y] < K) continue;
int z = n - y + 1;
ans += ca1(x - 1, z);
ans -= ca1(x, z);
}
ans %= mo;
} ll ca2(int x, int z) {
if(x + z > m) return 0;
return fac[m] * C(n - (x + z), m - (x + z)) % mo * nf[x - 2] % mo * nf[z + 1] % mo * ni[x + z] % mo;
}
void calc2() {
int y = n + 1;
fd(x, m, 2) {
while(y > 1 && p[x] + q[y] < K) y --;
if(p[x] + q[y] < K) continue;
int z = n - y + 1;
if(z > 0) {
ans += ca2(x, z);
ans -= ca2(x + 1, z);
} else {
n --;
ans += ca2(x, z);
ans -= ca2(x + 1, z);
n ++;
ans += ca2(x, 1);
ans -= ca2(x + 1, 1);
}
}
} void calc3() {
int z = 1;
fo(y, n - m + 1, n) {
while(z < n && p[z] + q[y] < K) z ++;
if(p[z] + q[y] < K) continue;
int x = n - y + 2;
if(z > 1) {
ans += ca2(x, z - 1);
ans -= ca2(x + 1, z - 1);
} else {
n --;
ans += ca2(x, z - 1);
ans -= ca2(x + 1, z - 1);
n ++;
ans += ca2(x, 1);
ans -= ca2(x + 1, 1);
}
}
} ll ca4(int x, int z) {
if(x + z > m) return 0;
ll sum = nf[z] * nf[x - 2] % mo * ni[x] % mo;
sum = (sum - nf[z + 1] * nf[x - 2] % mo * ni[x + z] % mo + mo) % mo;
return C(n - (x + z), m - (x + z)) * fac[m] % mo * sum % mo;
} void calc4() {
int y = n;
fd(x, m, 2) {
while(y > 1 && p[x] + q[y] + a[1] < K) y --;
if(p[x] + q[y] + a[1] < K) continue;
int z = n - y + 1;
ans += ca4(x, z);
ans -= ca4(x + 1, z);
}
} int main() {
freopen("fake.in", "r", stdin);
freopen("fake.out", "w", stdout);
n = 2e5;
fac[0] = 1; fo(i, 1, n) fac[i] = fac[i - 1] * i % mo;
nf[n] = ksm(fac[n], mo - 2); fd(i, n, 1) nf[i - 1] = nf[i] * i % mo;
fo(i, 1, n) ni[i] = ksm(i, mo - 2);
for(scanf("%d", &T); T; T --) {
scanf("%d %d %d", &n, &m, &K);
fo(i, 1, n) scanf("%lld", &a[i]);
if(K == 0) {
pp("1\n"); continue;
}
q[n + 1] = p[0] = 0;
fo(i, 1, n) p[i] = p[i - 1] + a[i];
fd(i, n, 1) q[i] = q[i + 1] + a[i];
ans = 0;
calc1();
calc2();
calc3();
calc4();
ans = (ans % mo + mo) * ksm(P(n, m), mo - 2) % mo;
pp("%lld\n", ans);
}
}

NOIP2019模拟2019.9.20】膜拜大会(外向树容斥,分类讨论)的更多相关文章

  1. 6364. 【NOIP2019模拟2019.9.20】养马

    题目描述 题解 一种显然的水法:max(0,-(点权-边权之和*2)) 这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值 考虑从子树往上推求出当前点的答案 设每棵子树从根往 ...

  2. 6359. 【NOIP2019模拟2019.9.15】小ω的树(tree)(定期重构)

    题目描述 题解 qy的毒瘤题 CSP搞这种码农题当场手撕出题人 先按照边权从大到小建重构树,然后40%暴力修改+查找即可 100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每 ...

  3. [JZOJ6359] 【NOIP2019模拟2019.9.15】小ω的树

    题目 题目大意 给你一棵树,带点权和边权. 要你选择一个联通子图,使得点权和乘最小边权最大. 支持修改点权操作. 思考历程 显然,最先想到的当然是重构树了-- 重构树就是在做最大生成树的时候,当两个联 ...

  4. 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)

    分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...

  5. [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】

    Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...

  6. 6424. 【NOIP2019模拟2019.11.13】我的订书机之恋

    题目描述 Description Input Output Sample Input 见下载 Sample Output 见下载 Data Constraint 题解 lj题卡线段树 求出每个右端点往 ...

  7. 6392. 【NOIP2019模拟2019.10.26】僵尸

    题目描述 题解 吼题但题解怎么这么迷 考虑一种和题解不同的做法(理解) 先把僵尸离散化,h相同的钦(ying)点一个大小 (可以发现这样每种情况只会被算正好一次) 计算完全被占领的方案,然后1-方案/ ...

  8. 6389. 【NOIP2019模拟2019.10.26】小w学图论

    题目描述 题解 之前做过一次 假设图建好了,设g[i]表示i->j(i<j)的个数 那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同 从n~1染色,点i的方案 ...

  9. 6377. 【NOIP2019模拟2019.10.05】幽曲[埋骨于弘川]

    题目描述 题解 随便bb 详细题解见 https://www.cnblogs.com/coldchair/p/11624979.html https://blog.csdn.net/alan_cty/ ...

随机推荐

  1. 【leetcode】395. Longest Substring with At Least K Repeating Characters

    题目如下: 解题思路:题目要找出一段连续的子串内所有字符出现的次数必须要大于k,因此出现次数小于k的字符就一定不能出现,所以就可以以这些字符作为分隔符分割成多个子串,然后继续对子串递归,找出符合条件的 ...

  2. 阿里云移动研发平台EMAS,是如何连续5年安全护航双11的?

    摘要: 阿里云作为阿里巴巴IT基础设施的基石,每年的双十一都面临前所未有的巨大技术挑战.阿里云的EMAS移动研发平台,连续5年支持双11,不仅保障了手机淘宝.支付宝这些阿里巴巴集团App的使用体验,也 ...

  3. OC学习篇之---循环引用问题

    在之前的一片文章中,我们介绍了数组操作对象的时候引用问题以及自动释放池的概念: http://blog.csdn.net/jiangwei0910410003/article/details/4192 ...

  4. Service系统服务(六):rsync基本用法、rsync+SSH同步、配置rsync服务端、访问rsync共享资源、使用inotifywait工具、配置Web镜像同步、配置并验证Split分离解析

    一.rsync基本用法 目标: 本例要求掌握远程同步的基本操作,使用rsync命令完成下列任务: 1> 将目录 /boot 同步到目录 /todir 下   2> 将目录 /boot 下的 ...

  5. 探索Redis设计与实现9:数据库redisDb与键过期删除策略

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  6. Unicode数据类型的是是非非(转)

    转:http://cio.chinabyte.com/344/9002344.shtml 在SQL Server数据库中,数据类型主要分为两类,分别为Unicode数据类型与非Unicode数据类型. ...

  7. ICO和区块链区别

    区块链项目众筹(ICO)浅析 2017-07-25 原创 Fintech科普大使 ICO是区块链初创公司项目融资的重要方式类似于Kickstarter众筹,但有不同之处(具体在下一节详述),可以避开传 ...

  8. centos 7 下升级自带 sqlite3

    问题 在 centos 7 上面运行 django 2.2 开发服务器时出现: django.core.exceptions.ImproperlyConfigured: SQLite 3.8.3 or ...

  9. 实验吧关于隐写术的writeUp(二)

    0x01 Black Hole 1.下载文件后,发现打不开,放到kali中.用命令file 分析一下文件 root@trial:~/Documents# file blackhole.img blac ...

  10. 【Vue】---Vue.config常用配置项

    一.前言 Vue-cli3 搭建的项目 相比较Vue-cli2界面相对较为简洁,之前的build和config文件夹不见了,那么应该如何配置 如webpack等的配呢? 二.基本配置 只需要在项目的根 ...