【题意分析】

  给你一张无向图,求其补图的联通块数及各个联通块大小。

【解题思路】

  暴搜!

  然而n2会T怎么办?

  仔细观察发现m远小于n2,也就是说这是一张极其稠密的补图。

  这时就要用到黑科技了:floodfill

  用邻接表维护原图的边,用链表维护当前剩余可选点,每次从队首出发从链表里找补图的边,把这些边对应的点入队并从链表里删去。

  这样,我们构造一种最坏的情况来卡这个算法:

  假设前m/n个点每个点都只和一个点不相连,这样对于每个点都要遍历链表中的所有点,此时复杂度是O((m/n)*n)=O(m)。

  因为前面已经把m条边都分配完了,接下来的第一个点就O(n)把链表清空了。之后的点全都是O(1)发现链表已被清空。

  这样总复杂度就是O(m+n)了。

【参考代码】

 #include <bits/stdc++.h>
#define range(i,c,o) for(register int i=(c);i<(o);++i)
#define dange(i,c,o) for(register int i=(c);i>(o);--i)
#define forin(i,t,p) for(t:: iterator i=p. begin();i!=p. end();++i)
#define dorin(i,t,p) for(t::reverse_iterator i=p.rbegin();i!=p.rend();++i)
using namespace std; #define __debug
#ifdef __debug
#define Function(type) type
#define Procedure void
#else
#define Function(type) __attribute__((optimize("-O2"))) inline type
#define Procedure __attribute__((optimize("-O2"))) inline void
#endif #ifdef __int128_t
typedef __int128_t integer;
#else
typedef long long integer;
#endif //quick_io {
Function(integer) getint()
{
char c=getchar(); for(;!isdigit(c)&&c!='-';c=getchar());
short s=; for(;c=='-';c=getchar()) s*=-; integer r=;
for(;isdigit(c);c=getchar()) (r*=)+=c-''; return s*r;
}
//} quick_io static int n=getint(); //list {
int suc[],pre[];
Procedure clear()
{
range(i,,n+) suc[i]=i+,pre[i]=i-;
suc[]=,pre[n+]=n;
}
Procedure erase(const int&x)
{
pre[suc[x]]=pre[x],suc[pre[x]]=suc[x];
}
//} list bool tag[]={},vis[]={};
vector<int> edg[]; queue<int> que;
Function(int) floodfill(const int&rt)
{
int ret=; erase(rt);
for(que.push(rt);!que.empty();que.pop())
{
int fr=que.front(); vis[fr]=,++ret;
forin(i,vector<int>,edg[fr]) tag[*i]=;
for(int i=suc[];i<=n;i=suc[i])
{
if(!tag[i]) erase(i),que.push(i);
}
forin(i,vector<int>,edg[fr]) tag[*i]=;
}
return ret;
} int rec[];
int main()
{
for(int m=getint();m--;)
{
int u=getint(),v=getint();
edg[u].push_back(v),edg[v].push_back(u);
}
clear(); int cnt=;
range(i,,n+) if(!vis[i]) rec[cnt++]=floodfill(i);
sort(rec,rec+cnt),printf("%d\n",cnt);
range(i,,cnt) printf("%d ",rec[i]);
return putchar('\n'),;
}

bzoj1098题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 【leetcode】986. Interval List Intersections

    题目如下: Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted ...

  2. bzoj 2015

    http://www.lydsy.com/JudgeOnline/problem.php?id=2015 裸最短路(' '     ) 不过我最初以为是mst (' '    ) #include & ...

  3. OC学习篇之---谓词(NSPredicate)

    在前一篇文章中我们介绍了OC中一个重要技术通知:http://blog.csdn.net/jiangwei0910410003/article/details/41923401,今天我们在来看一下OC ...

  4. 送礼物(二分加双向DFS)

    题目链接 题意:给你n个礼物重量,给你一个M力量,看你一次性搬动不超过M的礼物重量. 思路:看似背包,但M太大.所以要用DFS,但n也有45,所以考虑双向DFS先搜前半部分满足情况的所有重量,然后去重 ...

  5. Ubuntu安装可视化电脑配置视图工具neofetch

    安装步骤: sudo apt-get install software-properties-common python-software-propertiessudo add-apt-reposit ...

  6. HTML5: HTML5 Video(视频)

    ylbtech-HTML5: HTML5 Video(视频) 1.返回顶部 1. HTML5 Video(视频) 很多站点都会使用到视频. HTML5 提供了展示视频的标准. 检测您的浏览器是否支持 ...

  7. Linux中grep命令,用或的关系查询多个字符串,正则表达式基础说明

    请尊重版权:原文:https://blog.csdn.net/lkforce/article/details/52862193 使用 grep 'word1|word2' 文件名  这样的命令是不对的 ...

  8. The Accomodation of Students HDU - 2444 二分图判定 + 二分图最大匹配 即二分图-安排房间

    /*655.二分图-安排房间 (10分)C时间限制:3000 毫秒 |  C内存限制:3000 Kb题目内容: 有一群学生,他们之间有的认识有的不认识.现在要求把学生分成2组,其中同一个组的人相互不认 ...

  9. document.createDocumentFragment()的用法

    createDocumentFragment有什么作用呢? 调用多次document.body.append(),每次都要刷新页面一次.效率也就大打折扣了,而使用document_createDocu ...

  10. Python之在字符串中处理html和xml

    需求:替换文本字符串中的 ‘<’ 或者 ‘>’ ,使用 html.escape() 函数 import html s="<div>你好<div>" ...