Problem Statement

There is an integer sequence A of length N.

Find the number of the pairs of integers l and r (1≤lrN) that satisfy the following condition:

  • Al xor Al+1 xor … xor Ar=Al + Al+1 + … + Ar

Here, xor denotes the bitwise exclusive OR.

Definition of XOR

Constraints

  • 1≤N≤2×105
  • 0≤Ai<220
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
A1 A2 AN

Output

Print the number of the pairs of integers l and r (1≤lrN) that satisfy the condition.

Sample Input 1

4
2 5 4 6

Sample Output 1

5

(l,r)=(1,1),(2,2),(3,3),(4,4) clearly satisfy the condition. (l,r)=(1,2) also satisfies the condition, since A1 xor A2=A1 + A2=7. There are no other pairs that satisfy the condition, so the answer is 5.

Sample Input 2

9
0 0 0 0 0 0 0 0 0

Sample Output 2

45

Sample Input 3

19
885 8 1 128 83 32 256 206 639 16 4 128 689 32 8 64 885 969 1

Sample Output 3

37

题意:
给你一个含有N个整数的数组,
让你求出有多少对l和r,使之 a[l]+...+a[r] = a[l]^... ^a[r]
即让你找出有多少对l和r,使数组的l~r的前缀和和异或和相等。 思路:
我们知道这样的结论,
对于一个数组,他的异或前缀和有和sum前缀和类似的性质。
即我们用一个数组 prexor[i]来维护从1~i数组的异或值,那么 l~r的异或值可以表示为
prexor[r]^prexor[l-1] 并且异或和sum和有这样的性质,
即如果l~r 数组 a[l]~a[r] 的sum和与a[l]^……^a[r]的异或值不同时,那么l与任意一个r以及r之后的i。
不会满足 l到i的sum和与异或和相同 。因为前一会有不满足的情况,后继的数组无论如何也不可能满足。
那么我们来看本题,
我们就可以通过上面的这个性质和利用双指针的常用套路方法:
对于每一个l,求出使之使其满足sum和与异或和相等的最右边的r。
那么以l为左端点的pair个数就是 r-l+1个
,然后我们把 l向右移动一位,同时删除 a[l]对sum和以及异或和的贡献。
然后对于新的l,我们只需要从上一个状态的r继续向后判定是否符合即可。(因为l~r满足的话,l+1~r一定也满足)
直至l大于n的时候跳出操作,输出答案即可。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = ; while (b) {if (b % )ans = ans * a % MOD; a = a * a % MOD; b /= ;} return ans;}
inline void getInt(int* p);
const int maxn = ;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int a[maxn];
int n;
ll ans = 0ll; int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin >> n;
repd(i, , n)
{
cin >> a[i];
}
// ans=n;
ll sum = 0ll;
ll xo = 0ll;
int l = ;
int r = ;
ll cnt = 0ll;
while ()
{
while (r < n && sum + a[r + ] == (xo ^ a[r + ]))
{
r++;
sum += a[r];
xo ^= a[r];
}
cnt = r - l + ;
// ans+=(cnt*(cnt+1))/2;
ans += cnt;
sum -= a[l];
xo ^= a[l++];
if (l == n + )
{
break;
}
} cout << ans << endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
												

Xor Sum 2 AtCoder - 4142 (异或前缀和性质+ 双指针)的更多相关文章

  1. AtCoder Regular Contest 098 D - Xor Sum 2 区间异或=相加 DP思想

    题意:给出n个数,求它的连续子序列中,满足下列公式,(l,r)的对数有多少对 Al xor Al+1 xor … xor Ar=Al + Al+1 + … + Ar 思路:由题意可以得到,连续子序列, ...

  2. 2014百度之星第三题Xor Sum(字典树+异或运算)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  3. HDU 4825 Xor Sum (trie树处理异或)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)Total S ...

  4. AtCoder Beginner Contest 098 D - Xor Sum 2

    D - Xor Sum 2 Time limit : 2sec / Memory limit : 1024MB Score : 500 points Problem Statement There i ...

  5. Xor Sum(讲解异或)【字典树】

    Xor Sum 题目链接(点击) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Other ...

  6. 字典树-百度之星-Xor Sum

    Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...

  7. UVALive4682 XOR Sum

    UVALive4682 XOR Sum 题意 给定一个数组, 求连续子序列中异或值最大的值. 题解 假设答案区间为 [L, R], 则答案为 XOR[L, R], 可以将区间分解为 XOR[L,R] ...

  8. [BZOJ3261] 最大异或和 (异或前缀和,可持久化Trie)

    Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x:询问操作, ...

  9. P2420 让我们异或吧 (树链剖分,异或前缀和)

    题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能 ...

随机推荐

  1. React Native商城项目实战04 - 封装TabNavigator.Item的创建

    1.Main.js /** * 主页面 */ import React, { Component } from 'react'; import { StyleSheet, Text, View, Im ...

  2. 2018 icpc 沈阳

    https://codeforces.com/gym/101955 J 签到 #include<iostream> #include<cstring> #include< ...

  3. Octavia 的实现与分析(OpenStack Rocky)

    目录 文章目录 目录 Octavia 基本对象概念 基本使用流程 软件架构 服务进程清单 代码结构 loadbalancer 创建流程分析 network_tasks.AllocateVIP netw ...

  4. 自建 CA 中心并签发 CA 证书

    目录 文章目录 目录 CA 认证原理浅析 基本概念 PKI CA 认证中心(证书签发) X.509 标准 证书 证书的签发过程 自建 CA 签发证书并认证 HTTPS 网站的过程 使用 OpenSSL ...

  5. 利用yum创建本地仓库与网络源

    一.创建本地yum仓库 1.cd /etc/yum.repos.d/ 2.创建配置文件:[root@li yum.repos.d]# vim local.repo 3.写入配置信息并保存 [li]na ...

  6. 初学node.js-nodejs中实现用户登录路由

    经过前面几次的学习,已经可以做下小功能,今天要实现的事用户登录路由. 一.users_model.js  功能:定义用户对象模型 var mongoose=require('mongoose'), S ...

  7. paramiko远程连接linux服务器进行上传下载文件

    花了不少时间来研究paramiko中sftpclient的文件传输,一顿操作猛如虎,最后就一直卡在了路径报错问题,疯狂查阅资料借鉴大佬们的心得,还是搞不好,睡了个午觉醒来,仔细一看原来是指定路径的文件 ...

  8. 应用安全 - 工具 - NScan - 漏洞汇总

    工具介绍 Date 用途 端口服务扫描 | whois | nslookup Nscan v0.9.1 缓冲区溢出导致远程代码执行 Date 类型缓冲区溢出导致远程代码执行 影响范围 复现字符量过多 ...

  9. (转)Eclipse - CDT使用GDB调试C++的问题-无源文件命名(No source file named)

    http://tech.ddvip.com/2014-09/1411618782213496.html Eclipse CDT调试C++, 使用的Unix的调试器GDB; 由于在Unix下, 文件的目 ...

  10. python multiprocessing模块 介绍

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu\_count\(\)查看),在python中大部分情况需要使用多进 ...