【BZOJ1211】【HNOI2004】树的计数 prufer序列
题目描述
给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树。
无解输出\(0\)。保证答案不超过\({10}^{17}\)。
\(n\leq 150\)
题解
考虑prufer序列。
答案为
\]
直接乘会爆long long,要转成\(n-1\)个组合数的乘积。当然你也可以分解质因数。
如果\(n\neq 1\)且\(d_i=1\),输出\(0\)
如果\(\sum d_i\neq 2n-2\),输出\(0\)
时间复杂度:\(O(n^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll c[200][200];
int d[200];
int main()
{
int n;
scanf("%d",&n);
int i,j;
int sum=0;
for(i=1;i<=n;i++)
{
scanf("%d",&d[i]);
if(n!=1&&d[i]<=0)
{
printf("0\n");
return 0;
}
sum+=d[i];
}
if(sum!=2*n-2)
{
printf("0\n");
return 0;
}
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
ll ans=1;
ll s=0;
for(i=1;i<=n;i++)
{
ans*=c[s+d[i]-1][d[i]-1];
s+=d[i]-1;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ1211】【HNOI2004】树的计数 prufer序列的更多相关文章
- bzoj1211: [HNOI2004]树的计数 prufer序列裸题
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...
- BZOJ1211: [HNOI2004]树的计数(prufer序列)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2987 Solved: 1111[Submit][Status][Discuss] Descript ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- [HNOI2004] 树的计数 - prufer序列
给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
随机推荐
- Streaming Principal Component Analysis in Noisy Settings
论文背景: 面对来袭的数据,连续样本不一定是不相关的,甚至不是同分布的. 当前,大部分在线PCA都只关注准确性,而忽视时效性! 噪声?数据缺失,观测有偏,重大异常? 论文内容: Section 2 O ...
- NSAssert和NSParameterAssert
2016.05.05 18:34* 字数 861 阅读 5127评论 0喜欢 17 https://www.jianshu.com/p/3072e174554f NSAssert和NSParamete ...
- XT535
今天金山误删了一个文件,把手机系统整坏了,故刷了个机,刷机教程: http://bbs.dospy.com/thread-15027415-1-623-1.html 中间安装了个驱动精灵,否则手机开启 ...
- 01-VMware-workstation14安装
VMware-workstation14安装步骤: 首先现在虚拟机wmware,我现在的版本是:VMware-workstation-full-14.1.1.28517.exe 到处这里就安装完成: ...
- Tomcat web.xml配置参数详解
Apache Tomcat Configuration Reference - The Context Containerhttps://tomcat.apache.org/tomcat-5.5-do ...
- 日志分析工具之goAccess
在此推荐一款分析日志的工具,方便我们日常对于网站的访问状况有一个较为清晰的了解 一.安装 官网: https://goaccess.io/download 源码安装: 1. wget http:// ...
- MySQL 性能调优之索引
原文:http://bbs.landingbj.com/t-0-245452-1.html 对于索引的优化,我们第一需要找到合适的字段,第二创建索引找到合适的顺序,第三要找到合适的比例,第四是要做合适 ...
- Git-用 cherry-pick 挑好看的小樱桃
版权声明:本文为博主原创文章,转载请在文章明显位置标明文章原属哦. https://blog.csdn.net/qq_32452623/article/details/79449534 ti ...
- [转帖]Windows批处理(cmd/bat)常用命令小结
Windows批处理(cmd/bat)常用命令小结 非常值得学习的文档 先放这里 有时间做实验, 转载自:“趣IT”微信公共号 前言 批处理文件(batch file)包含一系列 DOS命令,通常用于 ...
- [转帖]关于CPU Cache -- 程序猿需要知道的那些事
关于CPU Cache -- 程序猿需要知道的那些事 很早之前读过作者的blog 记得作者在facebook 工作.. 还写过mysql相关的内容 大拿 本文将介绍一些作为程序猿或者IT从业者应该知道 ...