【BZOJ1211】【HNOI2004】树的计数 prufer序列
题目描述
给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树。
无解输出\(0\)。保证答案不超过\({10}^{17}\)。
\(n\leq 150\)
题解
考虑prufer序列。
答案为
\]
直接乘会爆long long,要转成\(n-1\)个组合数的乘积。当然你也可以分解质因数。
如果\(n\neq 1\)且\(d_i=1\),输出\(0\)
如果\(\sum d_i\neq 2n-2\),输出\(0\)
时间复杂度:\(O(n^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll c[200][200];
int d[200];
int main()
{
int n;
scanf("%d",&n);
int i,j;
int sum=0;
for(i=1;i<=n;i++)
{
scanf("%d",&d[i]);
if(n!=1&&d[i]<=0)
{
printf("0\n");
return 0;
}
sum+=d[i];
}
if(sum!=2*n-2)
{
printf("0\n");
return 0;
}
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
ll ans=1;
ll s=0;
for(i=1;i<=n;i++)
{
ans*=c[s+d[i]-1][d[i]-1];
s+=d[i]-1;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ1211】【HNOI2004】树的计数 prufer序列的更多相关文章
- bzoj1211: [HNOI2004]树的计数 prufer序列裸题
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...
- BZOJ1211: [HNOI2004]树的计数(prufer序列)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2987 Solved: 1111[Submit][Status][Discuss] Descript ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- [HNOI2004] 树的计数 - prufer序列
给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
随机推荐
- 如何用 Node.js 和 Elasticsearch 构建搜索引擎
Elasticsearch 是一款开源的搜索引擎,由于其高性能和分布式系统架构而备受关注.本文将讨论其关键特性,并手把手教你如何用它创建 Node.js 搜索引擎. Elasticsearch 概述 ...
- 十九、多文件上传(ajaxFileupload实现多文件上传功能)
来源于https://www.jb51.net/article/128647.htm 打开google 搜索"ajaxFileupload' ‘多文件上传"可以搜到许许多多类似的, ...
- c++入门之运算符重载
c++函数重载:可以将一个函数名用于不同功能的函数.从而处理不同的对象.对于运算符,同样也有这样的用途,即对同一个标志符的运算符,可以运用到不同的功能中去. 首先引入:运算符重载,在C语言中甚至都有运 ...
- Stack Sorting CodeForces - 911E (思维+单调栈思想)
Let's suppose you have an array a, a stack s (initially empty) and an array b (also initially empty) ...
- Proper usage of Java -D command-line parameters
https://stackoverflow.com/questions/5045608/proper-usage-of-java-d-command-line-parameters https://c ...
- html问题汇总
1.textarea换行 textarea中无法使用<br/>换行,需要使用\n 2.textarea无法提交 我们知道表单中的元素需要设置name属性才能够提交,但是如果设置了disab ...
- 2 JAVA 项目名称前红色叹号如何解决
1 Java 项目前出现红色叹号Eclipse找不到项目需要的JAR包,可以在这里面解决: ① 右键点击项目,选择[Build Path].[Configure Build Path...] ② 在这 ...
- [转帖]批处理-For详解
批处理-For详解 https://www.cnblogs.com/DswCnblog/p/5435300.html for 循环的写法 感觉非常好. 今天下午的时候简单测试了下. 多学习提高 非常重 ...
- Oracle行列转换case when then方法案例
select (select name from t_area where id=areaid) 区域, end) 一月, end) 二月, end) 三月, end) 四月, end) 五月, en ...
- 【学亮IT手记】Ajax跨域问题精讲--jQuery解决跨域操作
什么是跨域 跨域,它是不同的域名(服务器)之间的相互的资源之间的访问. 当协议,域名,端口号任意一个不同,它们就是不同的域. 正常情况下,因为浏览器安全的问题,不同域之间的资源是不可以访问的. 跨域的 ...