题目描述

  给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色。要求黑点两两之间的距离加上白点两两之间距离的和最大。问你最大的和是多少。

  \(n\leq 2000\)

题解

  我们考虑树形DP。

  设\(f_{i,j}\)为以\(i\)为根的子树,染了\(j\)个黑点的最大收益。

  若一条边的一端有\(s_1\)个点,选了\(j_1\)个黑点,另一端有\(s_2\)个点,选了\(j_2\)个黑点,那么这条边的贡献就是

\[w\times(j_1\times j_2+(s_1-j_1)\times (s_2-j_2))
\]

  于是我们就可以从\(f_{x,i},f_{v,j}\)转移到\(f_{x,i+j}\)。

  表面上看是\(O(n^3)\)的,因为要枚举选了几个黑点,实际上是\(O(n^2)\)的。

  转移可以看成两边各选一个点,这个点\(x\)就是两边的点的lca。因为总共有\(O(n^2)\)个lca,所以就是\(O(n^2)\)的。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
ll upmin(ll &a,ll b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(ll &a,ll b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
struct graph
{
int v[5010];
int w[5010];
int t[5010];
int h[2010];
int n;
graph()
{
memset(h,0,sizeof h);
n=0;
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
w[n]=z;
t[n]=h[x];
h[x]=n;
}
};
graph g;
ll f[2010][2010];
ll h[2010];
int s[2010];
int n,k;
void dfs(int x,int fa)
{
s[x]=1;
f[x][0]=f[x][1]=0;
int i,v,j,l;
for(i=g.h[x];i;i=g.t[i])
if(g.v[i]!=fa)
{
v=g.v[i];
dfs(v,x);
memset(h,0xc0,sizeof h);
for(j=0;j<=s[x]&&j<=k;j++)
for(l=0;l<=s[v]&&j+l<=k;l++)
if(n-k-s[v]+l>=0)
upmax(h[j+l],f[x][j]+f[v][l]+ll(g.w[i])*(ll(k-l)*l+ll(n-k-s[v]+l)*(s[v]-l)));
s[x]+=s[v];
for(j=0;j<=s[x]&&j<=k;j++)
f[x][j]=h[j];
}
}
int main()
{
scanf("%d%d",&n,&k);
int i,x,y,z;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
g.add(x,y,z);
g.add(y,x,z);
}
memset(f,0xc0,sizeof f);
dfs(1,0);
printf("%lld\n",f[1][k]);
return 0;
}

【BZOJ4033】【HAOI2015】树上染色 树形DP的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

随机推荐

  1. hibernate坑边闲话

    使用hibernate各种各样的坑 Remember that ordinal parameters are 1-based node to traverse cannot be null 这两个错误 ...

  2. Generalized Power Method for Sparse Principal Component Analysis

    目录 重点 算法 这篇文章,看的晕晕的,但是被引用了400多次了,就简单地记一笔. 这个东西,因为\(\ell_1\)范数,所以会稀疏化,当然,和\(\gamma\)有关. 重点 我想重点写的地方是下 ...

  3. linux 下mysql服务的管理

    一.mysql服务的管理 1.1 mysql启动与关闭 linux下启动mysql: /etc/init.d/mysqld start 关闭进程: ps -ef | grep mysql 找到进程号 ...

  4. Django的contenttypes

    这是一个django内置的表结构,为的就是通过两个字段让表和N张表创建FK关系. 比如说有两种不同课程,这两种课程都有价格周期和策略.如果最低级的则是给每个表创建一个价格策略.如果非要在同一个表内使用 ...

  5. 软件工程(FZU2015) 助教总结

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 本次构建之法-SE助教工作,和福州大学张老师协作,福大学生基本发挥出了一定水平,在此做个小结. 教师 张老师本身的SE教学 ...

  6. servlet总结:Servlet基础

    Servlet基础 1.手工编写第一个Servlet ⑴继承HttpServlet ⑵重写doGet()或者doPost()方法 ⑶在web.xml中注册Servlet 2.使用eclipse编写第一 ...

  7. 虚拟机Ubuntu图形界面进入命令行快捷键

    ctrl+alt+f2 https://jingyan.baidu.com/article/03b2f78c69e5c25ea337ae40.html https://www.zabbix.com/d ...

  8. Git - 常见错误与解决方案

    1.windows使用git时出现:warning: LF will be replaced by CRLF 分析: windows中的换行符为 CRLF, 而在linux下的换行符为LF,所以在执行 ...

  9. Python + selenium + pycharm 环境部署细节 和selenium、Jenkins简单介绍

    一.测试体系:Python + selenium + pycharm + Jenkins/docker 环境搭建: 1.安装python 3.4/3.5 2/3.6/ 3.7 2.配置环境变量 3.p ...

  10. js 深度复制deepClone

    function isObject(obj) { return typeof obj === 'object' && obj != null; } const deepClone =( ...