【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述
给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色。要求黑点两两之间的距离加上白点两两之间距离的和最大。问你最大的和是多少。
\(n\leq 2000\)
题解
我们考虑树形DP。
设\(f_{i,j}\)为以\(i\)为根的子树,染了\(j\)个黑点的最大收益。
若一条边的一端有\(s_1\)个点,选了\(j_1\)个黑点,另一端有\(s_2\)个点,选了\(j_2\)个黑点,那么这条边的贡献就是
\]
于是我们就可以从\(f_{x,i},f_{v,j}\)转移到\(f_{x,i+j}\)。
表面上看是\(O(n^3)\)的,因为要枚举选了几个黑点,实际上是\(O(n^2)\)的。
转移可以看成两边各选一个点,这个点\(x\)就是两边的点的lca。因为总共有\(O(n^2)\)个lca,所以就是\(O(n^2)\)的。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
ll upmin(ll &a,ll b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(ll &a,ll b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
struct graph
{
int v[5010];
int w[5010];
int t[5010];
int h[2010];
int n;
graph()
{
memset(h,0,sizeof h);
n=0;
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
w[n]=z;
t[n]=h[x];
h[x]=n;
}
};
graph g;
ll f[2010][2010];
ll h[2010];
int s[2010];
int n,k;
void dfs(int x,int fa)
{
s[x]=1;
f[x][0]=f[x][1]=0;
int i,v,j,l;
for(i=g.h[x];i;i=g.t[i])
if(g.v[i]!=fa)
{
v=g.v[i];
dfs(v,x);
memset(h,0xc0,sizeof h);
for(j=0;j<=s[x]&&j<=k;j++)
for(l=0;l<=s[v]&&j+l<=k;l++)
if(n-k-s[v]+l>=0)
upmax(h[j+l],f[x][j]+f[v][l]+ll(g.w[i])*(ll(k-l)*l+ll(n-k-s[v]+l)*(s[v]-l)));
s[x]+=s[v];
for(j=0;j<=s[x]&&j<=k;j++)
f[x][j]=h[j];
}
}
int main()
{
scanf("%d%d",&n,&k);
int i,x,y,z;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
g.add(x,y,z);
g.add(y,x,z);
}
memset(f,0xc0,sizeof f);
dfs(1,0);
printf("%lld\n",f[1][k]);
return 0;
}
【BZOJ4033】【HAOI2015】树上染色 树形DP的更多相关文章
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
随机推荐
- shell 小工具
1.打印进度条(待完善) #!/bin/sh printf -- 'Performing asynchronous action..'; DONE=; printf -- '............. ...
- 百度统计微信网站绑定(vue项目)
*网站域名:----- *网站首页:----/index.html 下列代码放入index.html vue加百度统计代码(亲测有效)
- 整数划分 poj3181
分析 因为n,m分别最大1000,100 所以结果会超过ll,要用两个来存大数的两部分 代码 #include<iostream> #include<algorithm> #i ...
- Linux常用软件启动、停止、重启命令
一.PHP 启动命令: /usr/local/php5/sbin/php-fpm 停止命令: pkill php-fpm 二.MySQL 启动命令: /etc/init.d/mysqld start ...
- python中*args,**kwargs
*args :当我们不知道要有多少个参数传给函数,或者我们想把一个列表或者tuple存起来以后传给函数. **kwargs:当我们不知道有多少个关键字参数要传给函数,或者我们想把字典存起来以后传给函 ...
- django之全局默认设置查看及admin语言设置
django之admin语言设置 admin后台管理默认使用的是英文,有时我们需要将其设置成自己的语言以方便使用管理: 将 LANGUAGE_CODE = '' 设置为欲设置的语言即可. 以下为dja ...
- Yii的操作提示框
效果如图 HTML + CSS<style> div.error{ background: #FFE0E0; border: 2px solid #FFA0A0; padding: 10p ...
- spring boot中log4j冲突问题和解决办法
Spring Boot中自带了log4j日志管理.写法应该是: private static final Logger logger = Logger.getLogger(XXX.class); 而不 ...
- Keras和tensorflow的区别
参考: https://blog.csdn.net/zhangbaoanhadoop/article/details/82111056
- Java语言中姐种遍历List的方法总结
遍历 List 的方法: 1. for 2. advanced for 3. Iterator 4. while 5. ListIterator List<E> list 1. for f ...