import numpy as np
import pandas as pd

数据加载

首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作。pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为:

  • read_csv
  • read_table
  • read_sql

    q

1.1 加载csv数据

  • header 表标题,可以使用整形和或者整形列表来指定标题在哪一行,None是无标题,默认infer首行
  • sep 控制数据之间的分隔符号。read_csv方法,默认为逗号(,)
  • names 设置列标签(相当于df.columns)
  • index_col 可以指定有唯一标记的列来充当行标签
  • usecols 指定感兴趣的列
# 加载数据集, 返回DataFram类型
df = pd.read_csv('/home/geoffrey/文档/33.csv', header=0, sep=',', usecols=['v:0', 'Points:0', 'Points:1', 'Points:2'])
df.head(10)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
v:0 Points:0 Points:1 Points:2
0 2.57150 1.23150 -0.86263 -0.40724
1 2.08420 1.15670 -0.90047 -0.34635
2 1.27970 0.76719 -0.93330 -0.26176
3 0.71951 0.63454 -0.91585 -0.22918
4 1.63080 0.81560 -0.93992 -0.20332
5 3.36400 1.50590 -0.98745 -0.19570
6 2.27160 0.82635 -0.89883 -0.19312
7 2.64630 0.96451 -0.85991 -0.18457
8 0.91226 0.68853 -0.83424 -0.18203
9 4.55390 1.46730 -0.82822 -0.17043

1.2 加载数据库数据

pd.read_sql(sql语句, 连接对象)

import sqlite3

# 创建连接,创建数据库
con = sqlite3.connect('test.db')
# SQL语句
sql = 'create table person(id int primary key, name varchar(100))'
con.execute(sql) # 插入数据
sql = 'insert into person(name) values("Geoffrey")'
con.execute(sql)
con.commit() # 查看数据
sql = 'select * from person'
pd.read_sql(sql, con)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
id name
0 None Geoffrey

1.3 数据流处理

数据流.getvalue() # 注意,写入后指针在数据流的末尾,需要调整指针

from io import StringIO # 类文件对象(缓存区)

# 创建缓存区
sio = StringIO() # 向缓存区写入数据
df.to_csv(sio) # 读取数据
sio.getvalue()
',0,1,2\n0,1,2,3.0\n1,4,5,6.0\n2,7,8,\n'
# 调整指针到缓存区头部
sio.seek(0)
sio.read()
',0,1,2\n0,1,2,3.0\n1,4,5,6.0\n2,7,8,\n'

2. 写入数据

DataFrame与Series对象的to_csv方法:

该方法可以将数据写入:

  • 文件中
  • 数据流中
常用参数
  • sep 指定分隔符
  • header 是否写入标题行
  • na_rep 空值的表示
  • index 是否写入索引
  • index_label 索引字段的名称
  • columns 写入的字段
df = pd.DataFrame([
[1, 2, 3],
[4, 5, 6],
[7, 8, np.nan] # 含有
])
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 1 2 3.0
1 4 5 6.0
2 7 8 NaN
df.to_csv('test.csv', sep=',', header=True, index=True, na_rep='空', columns=[0, 2])
pd.read_csv('test.csv')

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
Unnamed: 0 0 2
0 0 1 3.0
1 1 4 6.0
2 2 7

Pandas学习1 --- 数据载入的更多相关文章

  1. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  2. pandas学习(创建多层索引、数据重塑与轴向旋转)

    pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...

  3. pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

    pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...

  4. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  5. pandas学习(四)--数据的归一化

    欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...

  6. Pandas学习(一)——数据的导入

    欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...

  7. 【转】Pandas学习笔记(二)选择数据

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. 吴裕雄--天生自然python学习笔记:pandas模块导入数据

    有时候,手工生成 Pandas 的 DataFrame 数据是件非常麻烦的事情,所以我们通 常会先把数据保存在 Excel 或数据库中,然后再把数据导入 Pandas . 另 一种情况是抓 取网页中成 ...

  9. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

随机推荐

  1. Confluence 6 数据库整合的方法 2:针对有大量附件的运行实例

    设置准备 这个方法仅仅针对附件存储在文件系统中.如果你存储附件在数据库中,请参考 Attachment Storage Configuration 文档中的内容来找到如何在 2 种不同的文件存储方式之 ...

  2. mysql之视图,触发器,事务等。。。

    一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  3. 最短路径之Bellman-Ford算法

    第一行为源点个数,边的个数m 接下来m行为a->b和权值 5 52 3 21 2 -31 5 54 5 23 4 3 Bellman-Ford算法(1): #include<iostrea ...

  4. follow

    public function follow(Request $request, FeedModel $model, FeedRepository $repository) { if (is_null ...

  5. Gson将字符串转map时,int默认为double类型

      gson能够将json字符串转换成map, 但是在转成map时, 会默认将字符串中的int , long型的数字, 转换成double类型 , 数字会多一个小数点 , 如 1 会转成 1.0 Gs ...

  6. Jmeter卡住解决方案

    windows环境下,修改jmeter.bat: set HEAP=-Xms256m -Xmx256m set NEW=-XX:NewSize=128m -XX:MaxNewSize=128m 改为: ...

  7. spring cloud 使用ribbon简单处理客户端负载均衡

    假如我们的multiple服务的访问量剧增,用一个服务已经无法承载, 我们可以把Hello World服务做成一个集群. 很简单,我们只需要复制Hello world服务,同时将原来的端口8762修改 ...

  8. @ResponseBody//该注解会将返回值转为json格式并放到响应体中返回到前台

  9. 常见的HTTP响应状态码解析

    概要 状态码的职责是当客户端向服务器端发送请求时,描述返回的请求结果.借助于状态码,浏览器(或者说用户)可以知道服务器是正常的处理了请求,还是出现了错误. 状态码以3位数字和原因短语组成,例如 200 ...

  10. error: each element of 'ext_modules' option must be an Extension instance or 2-tuple

    在编译cython扩展时出现. 解决办法: 必须先import setup再import extension,否则报错 from setuptools import setup from distut ...