【XSY2760】nonintersect 计算几何
题目描述
平面上有\(n\)条线段,你要擦掉所有线段但保留原有的\(2n\)个端点,然后连接这些端点形成\(n\)条不相交的线段,每个端点只能在一条线段中。
假设你画的线段总长为\(Y\),原有线段的总长为\(X\),你要满足\(Y\geq \frac{2}{\pi}X\)
\(n\leq 5000\)
题解
我们先随便画一个向量,把所有向量投影到这个向量上面。
若一个确定的向量\(\overrightarrow a\)的倾角为\(x\),另一个随机的单位向量\(\overrightarrow b\)的倾角为\(\theta\),那么\(\overrightarrow a\)在\(\overrightarrow b\)上的投影的长度为\(|a||\cos (x-\theta)|\)。这个东西的期望为\(|a|\frac{2}{\pi}\)。
所以随机一个向量,所有向量在这个向量的投影上的长度之和\(>\frac{2}{\pi}X\)的概率为\(\frac{1}{2}\)。
你可以多随机几次,也可以用一个确定性的算法算出上面这个东西。
怎么算?
假设后面那部分没有绝对值符号。把\(|a|\cos(x-\theta)\)展开成$|a|\sin x\sin \theta+|a|\cos x\cos \theta \(,把这些东西加起来得到\)c\sin \theta + d\cos \theta\(。现在我们要求这个东西的最大值。\)(c\sin \theta + d\cos \theta)'=c\cos \theta - d \sin \theta\(,那么\)\frac{c}{d}=\tan \theta$,然后就可以算出投影的长度。
但是现在有绝对值符号。
先把所有向量翻到\(x\)轴上方,按极角排序。
假设最优的是蓝色这个向量。
我们枚举和这个向量垂直的直线(红色),那么直线左边的向量\(\cos(x-\theta)\)的符号就是负的,右边的就是正的。
所以我们可以在\(O(n\log n)\)内把最优的向量算出来。
接下来把所有\(2n\)点投影在这个向量上,取左边一半的点作为我们要连的线段的左端点,右边一半的点作为右端点。这样连出来的长度肯定比原有的线段在这个向量上投影的长度大。
这样我们就得到了两个分离的点集,现在要在这两个点集间连线。
有两种方法:
第一种:取左下方的点集最左下的点,然后枚举右侧点集中的一个点,要求这两个点连成的直线下方的点中每个点集的点各占一半。把这两个点连起来,然后分治成小问题。
时间复杂度:期望\(O(n\log^2n)\),最坏\(O(n^2\log n)\)
第二种:求这两个点集合并后的凸包,删掉凸包上相邻两个属于不同的点集的点,把这两个点连起来,重复前面的过程。
时间复杂度:\(O(n^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<utility>
#include<vector>
using namespace std;
typedef pair<int,int> pii;
typedef pair<double,double> pdd;
typedef long long ll;
const double pi=acos(-1);
const double eps=1e-9;
struct point
{
double x,y;
point(){}
point(const double &a,const double &b):x(a),y(b){}
};
point operator +(point a,point b){return point(a.x+b.x,a.y+b.y);}
point operator -(point a,point b){return point(a.x-b.x,a.y-b.y);}
point operator *(point a,double b){return point(a.x*b,a.y*b);}
int operator <(point a,point b){if(a.x!=b.x)return a.x<b.x;return a.y<b.y;}
double dot(point a,point b){return a.x*b.x+a.y*b.y;}
double cross(point a,point b){return a.x*b.y-a.y*b.x;}
double len(point a){return sqrt(a.x*a.x+a.y*a.y);}
struct point2
{
int x,y;
point2(int a=0,int b=0)
{
x=a;
y=b;
}
};
point2 operator +(const point2 &a,const point2 &b){return point2(a.x+b.x,a.y+b.y);}
point2 operator -(const point2 &a,const point2 &b){return point2(a.x-b.x,a.y-b.y);}
point2 operator *(const point2 &a,const int &b){return point2(a.x*b,a.y*b);}
int operator <(const point2 &a,const point2 &b){if(a.x!=b.x)return a.x<b.x;return a.y<b.y;}
ll dot(const point2 &a,const point2 b){return (ll)a.x*b.x+(ll)a.y*b.y;}
ll cross(const point2 &a,const point2 &b){return (ll)a.x*b.y-(ll)a.y*b.x;}
double len(point2 a){return sqrt((double)a.x*a.x+(double)a.y*a.y);}
struct ppp
{
point2 x;
int y;
double v;
pdd a;
};
ppp c[10010];
point2 a[10010];
pii d[5010];
int cmp(ppp a,ppp b)
{
return a.v<b.v;
}
int n;
int link[10010];
int v1[10010],v2[10010];
int t1,t2;
int cmp2(int x,int y)
{
if(a[x].x!=a[y].x)
return a[x].x<a[y].x;;
return a[x].y<a[y].y;
}
int color[10010];
int b[10010];
int st[10010];
int top;
pdd operator +(pdd a,pdd b){return pdd(a.first+b.first,a.second+b.second);}
pdd operator -(pdd a,pdd b){return pdd(a.first-b.first,a.second-b.second);}
pdd f1[10010];
pdd f2[10010];
struct pppp
{
point x;
int y;
};
pppp e[10010];
int cmp3(pppp a,pppp b)
{
return a.x<b.x;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=2*n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
int x,y;
double s=0,ans;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&d[i].first,&d[i].second);
s+=len(a[d[i].first]-a[d[i].second]);
c[i].x=a[d[i].second]-a[d[i].first];
if(c[i].x.y<0)
{
c[i].x.x=-c[i].x.x;
c[i].x.y=-c[i].x.y;
}
c[i].y=i;
c[i].v=atan2(c[i].x.y,c[i].x.x);
c[i].a.first=len(c[i].x)*sin(c[i].v);
c[i].a.second=len(c[i].x)*cos(c[i].v);
}
sort(c+1,c+n+1,cmp);
for(int i=1;i<=n;i++)
f1[i]=f1[i-1]+c[i].a;
double mx=0,angle;
for(int i=0;i<=n;i++)
{
double now_angle=atan2(f1[n].first-2*f1[i].first,f1[n].second-2*f1[i].second);
if(now_angle<0)
now_angle+=2*pi;
double now=(f1[n].first-2*f1[i].first)*sin(now_angle)+(f1[n].second-2*f1[i].second)*cos(now_angle);
if(now>mx)
{
mx=now;
angle=now_angle;
}
}
point r(cos(angle),sin(angle));
for(int i=1;i<=2*n;i++)
{
e[i].x=r*dot(point(a[i].x,a[i].y),r);
e[i].y=i;
}
sort(e+1,e+2*n+1,cmp3);
for(int i=1;i<=n;i++)
color[e[i].y]=1;
for(int i=n+1;i<=2*n;i++)
color[e[i].y]=2;
t1=t2=0;
for(int i=1;i<=2*n;i++)
v1[++t1]=i;
sort(v1+1,v1+t1+1,cmp2);
for(int i=1;i<=n;i++)
{
top=0;
t2=t1;
for(int i=1;i<=t1;i++)
v2[i]=v1[i];
for(int j=1;j<=t1;j++)
{
x=v1[j];
while(top>=2&&cross(a[x]-a[st[top-1]],a[st[top]]-a[st[top-1]])>0)
top--;
st[++top]=x;
}
int flag=1;
for(int i=1;i<top;i++)
if(color[st[i]]!=color[st[i+1]])
{
link[st[i]]=st[i+1];
link[st[i+1]]=st[i];
b[st[i]]=b[st[i+1]]=1;
flag=0;
i++;
}
if(flag)
{
top=0;
for(int j=t1;j>=1;j--)
{
x=v1[j];
while(top>=2&&cross(a[x]-a[st[top-1]],a[st[top]]-a[st[top-1]])>0)
top--;
st[++top]=x;
}
for(int i=1;i<top;i++)
if(color[st[i]]!=color[st[i+1]])
{
link[st[i]]=st[i+1];
link[st[i+1]]=st[i];
b[st[i]]=b[st[i+1]]=1;
i++;
}
}
t1=0;
for(int i=1;i<=t2;i++)
if(!b[v2[i]])
v1[++t1]=v2[i];
}
for(int i=1;i<2*n;i++)
if(link[i]>i)
printf("%d %d\n",i,link[i]);
return 0;
}
【XSY2760】nonintersect 计算几何的更多相关文章
- ACM/ICPC 之 计算几何入门-叉积-to left test(POJ2318-POJ2398)
POJ2318 本题需要运用to left test不断判断点处于哪个分区,并统计分区的点个数(保证点不在边界和界外),用来做叉积入门题很合适 //计算几何-叉积入门题 //Time:157Ms Me ...
- HDU 2202 计算几何
最大三角形 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- ACM 计算几何中的精度问题(转)
http://www.cnblogs.com/acsmile/archive/2011/05/09/2040918.html 计算几何头疼的地方一般在于代码量大和精度问题,代码量问题只要平时注意积累模 ...
- hdu 2393:Higher Math(计算几何,水题)
Higher Math Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)
Rescue The Princess Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Several days ago, a b ...
- [知识点]计算几何I——基础知识与多边形面积
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxaq.html 1.前言 ...
- POJ 1106 Transmitters(计算几何)
题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...
- TYVJ计算几何
今天讲了计算几何,发几道水水的tyvj上的题解... 计算几何好难啊!@Mrs.General....怎么办.... 这几道题都是在省选之前做的,所以前面的Point运算啊,dcmp啊,什么什么的,基 ...
- 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...
随机推荐
- 开源后的.Net 如何选择使用
.NET是跨平台的开发栈.它有一个标准库,称为.NET Standard Library,其中包含了大量的APIs.这个标准库由各种.NET运行环境实现:.NET Framework..NET Co ...
- HDU - 1255 扫描线+离散化进阶
这道题最开始我以为和HDU - 1542 那道题一样,只需要把cover次数改成2次即可,但是后面仔细一想,我们需要求的是覆盖次数大于等于2次的,这样的话,我们需要维护两个长度,HDU-1542 由于 ...
- javascript重定向页面并用post方法传递消息
javascript中重定向页面得方法很多,同时能传递消息的也不少:但可用post方法传递的我只找到两种: 第一种方法:用document.write在 JavaScript函数中,用document ...
- spring datasource jdbc 密码 加解密
spring datasource 密码加密后运行时解密的解决办法 - 一号门-程序员的工作,程序员的生活(java,python,delphi实战)http://www.yihaomen.com/a ...
- winform使用相关
1.回车键触发按钮点击事件——回车登录 设置窗体的AccessButton属性 2.密码框样式设置 设置PasswordChar为想要的密码显示的样式,如* 3.设置窗口居中 设置StartPosi ...
- [转帖]linux tree命令--显示目录的树形结构
linux tree命令--显示目录的树形结构 版权声明:iamqilei@qq.com https://blog.csdn.net/u011729865/article/details/533 ...
- IIS下载地址
https://www.microsoft.com/zh-cn/download/confirmation.aspx?id=1038
- 剑指Offer(9)
题目: 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 解法: 要考虑到底数为0,指数为负数的情况,这道题主要考的是对边界值的思考. p ...
- TextView不用ScrollViewe也可以滚动的方法
转自:http://www.jb51.net/article/43377.htm android TextView不用ScrollViewe也可以滚动的方法. TextView textview = ...
- GIT的前世今生
在重点介绍GIT的一些操作之前,我们首先来说一说GIT的前世今生,了解整个版本控制的变迁能够让我们知道该如何去选择这些工具,另外通过这些技术的变迁也能够让我们对现在的技术有着更加深入的理解,在正式介绍 ...