思路:dp[i][j] 的j是上半段的和的值   这里表示的是达到上半段值是j的最小次数

答案在最小的可达到的j

#include<bits/stdc++.h>
using namespace std;
const int INF=10000000;
int a[10000],b[10000];
int dp[1000+10][10000];
const int pianyi=5000;
int main(){
int n; cin>>n;
int sum=0;
for(int i=1;i<=n;i++)scanf("%d%d",&a[i],&b[i]),sum+=a[i]+b[i];
for (int i = 1; i <= n; i ++)
for (int j = 0; j <= 6*n; j ++) dp[i][j] = INF;
dp[1][a[1]]=0;dp[1][b[1]]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=6*n;j++){
if(j>=a[i])dp[i][j]=min(dp[i][j],dp[i-1][j-a[i]]);
if(j>=b[i])dp[i][j]=min(dp[i][j],dp[i-1][j-b[i]]+1);
}
}
int temp1=INF,ans=INF;
for(int i=0;i<=sum;i++){
if(dp[n][i]!=INF){
if(abs(2*i-sum)<temp1){
ans=dp[n][i];
temp1=abs(2*i-sum);
}
else if(abs(i-(sum-i)) == temp1)ans=min(ans,dp[n][i]);
}
}
cout<<ans<<endl;
return 0;
}

  

P1282 多米诺骨牌 dp的更多相关文章

  1. 洛谷P1282 多米诺骨牌 (DP)

    洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...

  2. Luogu P1282 多米诺骨牌 DP。。背包?

    背包...差不多..QWQ 设f[i]为达到差值为i的状态需要多少次,那就很显然了: 注意区分正负不同的代价的循环方向 技巧:如果不想改负数的话,那可以移动一下数组下标,用一个新的指针指向原来的数组 ...

  3. P1282 多米诺骨牌【dp】

    P1282 多米诺骨牌 提交 20.02k 通过 6.30k 时间限制 1.00s 内存限制 125.00MB 题目提供者洛谷 难度提高+/省选- 历史分数100 提交记录 查看题解 标签   查看算 ...

  4. P1282 多米诺骨牌

    P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S ...

  5. 洛谷P1282 多米诺骨牌

    P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S ...

  6. poj 1717==洛谷P1282 多米诺骨牌

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6571   Accepted: 2178 Descript ...

  7. P1282 多米诺骨牌 (差值DP+背包)

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  8. P1282 多米诺骨牌 (背包变形问题)

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  9. P1282 多米诺骨牌[可行性01背包]

    题目来源:洛谷 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+ ...

随机推荐

  1. 使用 IIS 在 Windows 上托管 ASP.NET Core2.0

    准备: 操作系统:Windows Server 2008 R2 或更高版本 开发环境:VS2017 第一步:新建项目ASP.NET Core Web应用程序 在 Visual Studio 中,选择“ ...

  2. 我们都被GitHub出卖了!逃跑吧兄弟!

    周一突然间爆出微软以75亿收购GitHub可真是一颗重磅炸弹,一下轰动整个软件业.如果你不是搞开发的这篇文章几本不会引起你的共鸣:如果你没有用源代码管理这个消息也只不过是个新闻:如果你是微软系的朋友那 ...

  3. H5 59-浮动元素的脱标

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Python—闭包

    闭包的定义:即函数定义和函数表达式位于另一个函数的函数体内(嵌套函数).而且,这些内部函数可以访问它们所在的外部函数中声明的所有局部变量.参数.当其中一个这样的内部函数在包含它们的外部函数之外被调用时 ...

  5. Python_面向对象_单例模式

    class A(object): pass a1 = A() a2 = A() print(a1 == a2)print(id(a1))print(id(a2)) 结果: False 23257231 ...

  6. java总结:Java中获取系统时间(年、月、日)以及下拉菜单默认选择系统年、月、日的方法

    <!-- 获取系统当前的年.月.日 --> <%@ page import="java.util.*"%> <% Calendar calendar= ...

  7. 使用fetch代替ajax请求 post传递方式

    let postData = {a:'b'}; fetch('http://data.xxx.com/Admin/Login/login', { method: 'POST', mode: 'cors ...

  8. Oracle行列转换case when then方法案例

    select (select name from t_area where id=areaid) 区域, end) 一月, end) 二月, end) 三月, end) 四月, end) 五月, en ...

  9. Day 3-4 函数进阶

    1.名称空间 定义:Python使用叫做命名空间的东西来记录变量的轨迹.命名空间是一个 字典(dictionary) ,它的键就是变量名,它的值就是那些变量的值.是存放变量和值的内存地址的绑定关系的空 ...

  10. npm install、npm install --save与npm install --save-dev区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...