假设已经求出了i个点j个桥的连通图数量f[i][j],容易由此推出最终答案,套路地枚举1号点所在连通块大小即可。

  假设已经求出了i个点的边双连通图数量h[i],考虑由此推出f[i][j]。可以枚举其中一座桥将图划分成两个部分,固定1号点在其中一端,将桥两端的部分方案数相乘即可。这样每种方案被考虑的次数就是其中桥的个数,最后再除一下桥个数即可。

  考虑求h[i]。事实上直接将连通图数量减去f[i][1~i-1]即可。连通图计数就是经典题了,套路差不多。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 55
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,f[N][N],g[N][N],h[N],C[N][N],inv[N],p[N*N],ans;
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
freopen("sea.in","r",stdin);
freopen("sea.out","w",stdout);
n=read(),m=read();
C[0][0]=1;
for (int i=1;i<=n;i++)
{
C[i][0]=C[i][i]=1;
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*inv[P%i]*(P/i)%P;
p[0]=1;for (int i=1;i<=n*n;i++) p[i]=(p[i-1]<<1)%P;
h[1]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
inc(h[i],1ll*h[j]*C[i-1][j-1]%P*p[C[i-j][2]]%P);
h[i]=(p[C[i][2]]-h[i]+P)%P;
}
f[1][0]=1;g[1][0]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
{
for (int x=1;x<i;x++)
for (int y=0;y<j;y++)
inc(f[i][j],1ll*f[x][y]*f[i-x][j-y-1]%P*x%P*(i-x)%P*C[i-1][x-1]%P);
g[i][j]=f[i][j]=1ll*f[i][j]*inv[j]%P;
for (int x=1;x<i;x++)
for (int y=0;y<=j;y++)
inc(g[i][j],1ll*g[i-x][j-y]*f[x][y]%P*C[i-1][x-1]%P);
}
f[i][0]=h[i];
for (int j=1;j<i;j++) inc(f[i][0],P-f[i][j]);
g[i][0]=p[C[i][2]];
for (int j=1;j<i;j++) inc(g[i][0],P-g[i][j]);
}
int ans=0;
for (int i=0;i<=m;i++) inc(ans,g[n][i]);
cout<<ans;
return 0;
}

#191 sea(动态规划)的更多相关文章

  1. [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法

    今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...

  2. 算法61---两个字符串的最小ASCII删除和【动态规划】

    一.题目: 给定两个字符串s1, s2,找到使两个字符串相等所需删除字符的ASCII值的最小和. 示例 1: 输入: s1 = "sea", s2 = "eat" ...

  3. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

  4. Leedcode算法专题训练(动态规划)

    递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算. 斐波那契数列 1. 爬楼梯 70. Climbing Stairs (Easy) L ...

  5. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  6. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  7. sea.js模块化编程

    * 为什么要模块化? 解决文件依赖 解决命名冲突 ; var var2 = 2; function fn1(){ } function fn2(){ } return { fn1: fn1, fn2: ...

  8. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  9. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

随机推荐

  1. centos7下zabbix安装与部署

    1.Zabbix介绍 zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系 ...

  2. Mergeable Stack(链表实现栈)

    C - Mergeable Stack ZOJ - 4016 一开始用stl中内置的栈来写,其中第三个操作,我先复制到一个数组,再将其倒给另一个栈 这个方法有两个错误的地方: 1.栈在内存很大需要扩容 ...

  3. JDK8-新特性-附demo

    import java.nio.charset.StandardCharsets; import java.util.ArrayList; import java.util.Base64; impor ...

  4. 爬虫——cookies池的搭建

    https://github.com/Python3WebSpider/cookiesPool

  5. No enclosing instance of type is accessible. Must qualify the allocation with an enclosing instance of type LeadRestControllerTest (e.g. x.new A() where x is an instance of ).

    java - No enclosing instance is accessible. Must qualify the allocation with an enclosing instance o ...

  6. mongoDB 安装和配置环境变量,超详细版本

    下载mongoDB进行安装:https://www.mongodb.com/                                                 到Community Se ...

  7. 【Python3练习题 015】 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在第10次落地时,共经过多少米?第10次反弹多高?

    a = [100]  #每个‘反弹落地’过程经过的路程,第1次只有落地(100米) h = 100  #每个‘反弹落地’过程,反弹的高度,第1次为100米 print('第1次从%s米高落地,走过%s ...

  8. C\C++学习笔记 2

    C++记录4 自动存储: 生命周期在代码块,存储在栈,后入先出. 静态存储: 存在于程序的整个周期. 动态存储: 使用new delete 在内存池(堆)存储,不受程序生命周期控制. 内存泄露: 没有 ...

  9. Oracle通过ROWID删除表中重复记录

    -- 1 通过ROWID删除T1表里重复的记录    SELECT ROWID,A,B--DELETE FROM  T1WHERE ROWID IN (  SELECT RD  FROM  (     ...

  10. [转帖]Windows和Linux对决(多进程多线程)

    Windows和Linux对决(多进程多线程) https://blog.csdn.net/world_2015/article/details/44920467 太长了 还没看完.. 还是没太理解好 ...