#191 sea(动态规划)
假设已经求出了i个点j个桥的连通图数量f[i][j],容易由此推出最终答案,套路地枚举1号点所在连通块大小即可。
假设已经求出了i个点的边双连通图数量h[i],考虑由此推出f[i][j]。可以枚举其中一座桥将图划分成两个部分,固定1号点在其中一端,将桥两端的部分方案数相乘即可。这样每种方案被考虑的次数就是其中桥的个数,最后再除一下桥个数即可。
考虑求h[i]。事实上直接将连通图数量减去f[i][1~i-1]即可。连通图计数就是经典题了,套路差不多。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 55
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,f[N][N],g[N][N],h[N],C[N][N],inv[N],p[N*N],ans;
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
freopen("sea.in","r",stdin);
freopen("sea.out","w",stdout);
n=read(),m=read();
C[0][0]=1;
for (int i=1;i<=n;i++)
{
C[i][0]=C[i][i]=1;
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*inv[P%i]*(P/i)%P;
p[0]=1;for (int i=1;i<=n*n;i++) p[i]=(p[i-1]<<1)%P;
h[1]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
inc(h[i],1ll*h[j]*C[i-1][j-1]%P*p[C[i-j][2]]%P);
h[i]=(p[C[i][2]]-h[i]+P)%P;
}
f[1][0]=1;g[1][0]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
{
for (int x=1;x<i;x++)
for (int y=0;y<j;y++)
inc(f[i][j],1ll*f[x][y]*f[i-x][j-y-1]%P*x%P*(i-x)%P*C[i-1][x-1]%P);
g[i][j]=f[i][j]=1ll*f[i][j]*inv[j]%P;
for (int x=1;x<i;x++)
for (int y=0;y<=j;y++)
inc(g[i][j],1ll*g[i-x][j-y]*f[x][y]%P*C[i-1][x-1]%P);
}
f[i][0]=h[i];
for (int j=1;j<i;j++) inc(f[i][0],P-f[i][j]);
g[i][0]=p[C[i][2]];
for (int j=1;j<i;j++) inc(g[i][0],P-g[i][j]);
}
int ans=0;
for (int i=0;i<=m;i++) inc(ans,g[n][i]);
cout<<ans;
return 0;
}
#191 sea(动态规划)的更多相关文章
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- 算法61---两个字符串的最小ASCII删除和【动态规划】
一.题目: 给定两个字符串s1, s2,找到使两个字符串相等所需删除字符的ASCII值的最小和. 示例 1: 输入: s1 = "sea", s2 = "eat" ...
- Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)
Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...
- Leedcode算法专题训练(动态规划)
递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算. 斐波那契数列 1. 爬楼梯 70. Climbing Stairs (Easy) L ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- sea.js模块化编程
* 为什么要模块化? 解决文件依赖 解决命名冲突 ; var var2 = 2; function fn1(){ } function fn2(){ } return { fn1: fn1, fn2: ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
随机推荐
- mongo中的模糊查询
以下是一个mongo查询的综合应用,即介绍一个生产中实际应用的模糊查询,当然其实也很简单,主要用到mongo中的模糊查询和$or查询,以及并的关系,下面是一个mongo中的一条记录 { "_ ...
- Visual Studio Package 插件开发之自动生成实体工具(Visual Studio SDK)
前言 这一篇是VS插件基于Visual Studio SDK扩展开发的,可能有些朋友看到[生成实体]心里可能会暗想,T4模板都可以做了.动软不是已经做了么.不就是读库保存文件到指定路径么…… 我希望做 ...
- mysql自增id超大问题查询
引言 小A正在balabala写代码呢,DBA小B突然发来了一条消息,"快看看你的用户特定信息表T,里面的主键,也就是自增id,都到16亿了,这才多久,在这样下去过不了多久主键就要超出范围了 ...
- vue中使用sass
1.npm安装 npm install sass-loader --save-dev npm install node-sass --save-dev //--save写入到package.json里 ...
- 小菜鸡儿的第三次OO博客
规格化设计历史 规格化设计的历史目前网上的资料并不多,百度谷歌必应也表示无能为力...... 在这里结合现实情况讲一讲自己对程序规格化的理解,首先代码规格化对代码的影响是间接的,或许它不能让你代码里面 ...
- Dapper.NET
关于Dapper.NET的相关论述 年少时,为何不为自己的梦想去拼搏一次呢?纵使头破血流,也不悔有那年少轻狂.感慨很多,最近事情也很多,博客也很少更新了,毕竟每个人都需要为自己的生活去努力. 最近 ...
- gnuplot画折线图
之前尝试用jfreechart画自定义横坐标的折线图或时序图,发现很复杂,后来改用gnuplot了. gnuplot在网上一搜就能找到下载地址. 安装完成后,主要是命令行形式的交互界面,至少比jfre ...
- semantic-ui 标题
在semantic-ui中定义了5中标题样式,注意HTML中有h1-h6,而semantic-ui中只有h1-h5. 不过需要注意的是,semantic-ui的标题仍旧使用h1-h5来表示,但是在cl ...
- PAT L2-014 列车调度
https://pintia.cn/problem-sets/994805046380707840/problems/994805063166312448 火车站的列车调度铁轨的结构如下图所示. 两端 ...
- jvisualvm远程监控 visualgc插件 不受此jvm支持问题
https://yq.aliyun.com/ziliao/478212 1.修改远程服务器上java设置 vi $JAVA_HOME/jre/lib/security/java.policy 在 ...