洛谷P3246 [HNOI2016]序列 [莫队]
思路
看到可离线、无修改、区间询问,相信一定可以想到莫队。
然而,莫队怎么转移是个大问题。
考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理)
\(ans+=\sum_{i=l}^r \min\{a_i,a_{i+1} ,\dots ,a_r\}\)。
那么这东西如何快速统计呢?
考虑使用前缀和。
首先,显然要用单调栈预处理每个点左边最靠右的第一个比它小的数的位置\(L_i\),和ST表处理出RMQ的位置。
预处理出对于每一个\(r\),\(F(r)=\sum_{i=1}^r \min\{a_i,a_{i+1} ,\dots ,a_r\}\),方法如下:
\]
上面公式的意思是:\((L_r,r]\)这一段带来的贡献是\(a_r\),其他就和\(a_r\)无关,可以用\(F(L_r)\)代替了。
然后,\([l,r-1]\rightarrow[l,r]\)时就有:
\]
其中\(pos\)表示\([l,r]\)中最小值的位置。
于是就做完了。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 101100
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline T min(T x,T y){return x<y?x:y;}
templ inline T max(T x,T y){return x>y?x:y;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n,m;
ll a[sz];
int L[sz],R[sz];
ll Fl[sz],Fr[sz];
int st[sz][23],lg2[sz];
#define cmp(x,y) ((a[x]<a[y])?(x):(y))
inline int query(int l,int r){int len=lg2[r-l+1];return cmp(st[l][len],st[r-(1<<len)+1][len]);}
void init()
{
rep(i,1,n) st[i][0]=i;
rep(i,2,n) lg2[i]=lg2[i>>1]+1;
rep(i,1,20)
rep(j,1,n-(1<<i)+1)
st[j][i]=cmp(st[j][i-1],st[j+(1<<(i-1))][i-1]);
stack<int>s;
rep(i,1,n)
{
while (!s.empty()&&a[s.top()]>=a[i]) s.pop();
L[i]=(s.empty()?0:s.top());
s.push(i);
}
while (!s.empty()) s.pop();
drep(i,n,1)
{
while (!s.empty()&&a[s.top()]>a[i]) s.pop();
R[i]=(s.empty()?n+1:s.top());
s.push(i);
}
rep(i,1,n) Fl[i]=a[i]*ll(i-L[i])+Fl[L[i]];
drep(i,n,1) Fr[i]=a[i]*ll(R[i]-i)+Fr[R[i]];
}
#undef cmp
inline ll queryL(int l,int r) /* [l+1,r]->[l,r] */
{
int pos=query(l,r),Rpos=R[pos];
return Fr[l]-Fr[Rpos]-a[pos]*ll(Rpos-1-r);
}
inline ll queryR(int l,int r) /* [l,r-1]->[l,r] */
{
int pos=query(l,r),Lpos=L[pos];
return Fl[r]-Fl[Lpos]-a[pos]*ll(l-1-Lpos);
}
int blo,pos[sz];
void Init(){blo=n/sqrt(m);rep(i,1,n) pos[i]=i/blo;}
struct hh{int l,r,id;}q[sz];
inline bool cmp(const hh &x,const hh &y){return pos[x.l]==pos[y.l]?((pos[x.l]&1)?x.r<y.r:x.r>y.r):pos[x.l]<pos[y.l];}
ll Ans[sz];
int main()
{
file();
read(n,m);
rep(i,1,n) read(a[i]);
int l,r;
rep(i,1,m) read(l,r),q[i]=(hh){l,r,i};
init();Init();sort(q+1,q+m+1,cmp);
ll ans=0;
int LL=1,RR=0;
rep(i,1,m)
{
int l=q[i].l,r=q[i].r;
while (LL>l) --LL,ans+=queryL(LL,RR);
while (RR<r)
++RR,ans+=queryR(LL,RR);
while (LL<l) ans-=queryL(LL,RR),++LL;
while (RR>r) ans-=queryR(LL,RR),--RR;
Ans[q[i].id]=ans;
}
rep(i,1,m) printf("%lld\n",Ans[i]);
return 0;
}
洛谷P3246 [HNOI2016]序列 [莫队]的更多相关文章
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- 洛谷 P3246 - [HNOI2016]序列(单调栈+前缀和)
题面传送门 这道题为什么我就没想出来呢/kk 对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- 洛谷P3246 [HNOI2016]序列
传送门 题解 //minamoto #include<iostream> #include<cstdio> #define ll long long using namespa ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)
题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
随机推荐
- 微信小程序开发(5) 2048游戏
在这篇微信小程序开发教程中,我们将介绍如何使用微信小程序开发2048小游戏. 本文主要分为两个部分,小程序主体部分及小游戏页面部分 一.小程序主体部分 一个小程序主体部分由三个文件组成,必须放在项目的 ...
- 可由inetd启动的协议无关时间获取服务器程序
#include <time.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> ...
- Javaweb学习笔记——(二十二)——————文件上传、下载、Javamail
文件上传概述 1.文件上传的作用 例如网络硬盘,就是用来上传下载文件的. 在网络浏览器中,时常需要上传照片 2.文件上传对页面的要求 上 ...
- 十、uboot 代码流程分析---run_main_loop
调用 board_init_r,传入全局 GD 和 SDRAM 中的目的地址 gd->rellocaddr void board_init_r(gd_t *new_gd, ulong dest_ ...
- Mysql下Limit注入方法(此方法仅适用于5.0.0<mysql<5.6.6的版本)
SQL语句类似下面这样:(此方法仅适用于5.0.0<mysql<5.6.6的版本) SELECT field FROM table WHERE id > 0 ORDER BY id ...
- thymeleaf 传参到js的onclick事件中
html: <img th:onclick="'javascript:imgClick(\''+${card.id}+'\',\''+${card.name}+'\');'" ...
- cygwin 安装包管理器 apt-cyg
https://github.com/transcode-open/apt-cyg apt-cyg is a simple script. To install: lynx -source https ...
- 搭建单机版的FastDFS服务
一,原理讲解 FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合以文件为载体的 ...
- Charles手机抓包设置&无法打开火狐网页设置
1. Charles抓取手机上的网络包,需要安装证书(Charles的和手机的) 操作方法: https://blog.csdn.net/lea__dongyang/article/details/7 ...
- Oracle简单的序列应用
1.序列的简单作用 1.需要自增或自减一个值的时候. 2.为表中的列自动产生值. 3.由用户创建数据库对象,并可由多个用户共享. 4.一般用于主键或唯一列. 2.创建序列的语法及解析 create s ...