洛谷P3246 [HNOI2016]序列 [莫队]
思路
看到可离线、无修改、区间询问,相信一定可以想到莫队。
然而,莫队怎么转移是个大问题。
考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理)
\(ans+=\sum_{i=l}^r \min\{a_i,a_{i+1} ,\dots ,a_r\}\)。
那么这东西如何快速统计呢?
考虑使用前缀和。
首先,显然要用单调栈预处理每个点左边最靠右的第一个比它小的数的位置\(L_i\),和ST表处理出RMQ的位置。
预处理出对于每一个\(r\),\(F(r)=\sum_{i=1}^r \min\{a_i,a_{i+1} ,\dots ,a_r\}\),方法如下:
\]
上面公式的意思是:\((L_r,r]\)这一段带来的贡献是\(a_r\),其他就和\(a_r\)无关,可以用\(F(L_r)\)代替了。
然后,\([l,r-1]\rightarrow[l,r]\)时就有:
\]
其中\(pos\)表示\([l,r]\)中最小值的位置。
于是就做完了。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 101100
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline T min(T x,T y){return x<y?x:y;}
templ inline T max(T x,T y){return x>y?x:y;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n,m;
ll a[sz];
int L[sz],R[sz];
ll Fl[sz],Fr[sz];
int st[sz][23],lg2[sz];
#define cmp(x,y) ((a[x]<a[y])?(x):(y))
inline int query(int l,int r){int len=lg2[r-l+1];return cmp(st[l][len],st[r-(1<<len)+1][len]);}
void init()
{
rep(i,1,n) st[i][0]=i;
rep(i,2,n) lg2[i]=lg2[i>>1]+1;
rep(i,1,20)
rep(j,1,n-(1<<i)+1)
st[j][i]=cmp(st[j][i-1],st[j+(1<<(i-1))][i-1]);
stack<int>s;
rep(i,1,n)
{
while (!s.empty()&&a[s.top()]>=a[i]) s.pop();
L[i]=(s.empty()?0:s.top());
s.push(i);
}
while (!s.empty()) s.pop();
drep(i,n,1)
{
while (!s.empty()&&a[s.top()]>a[i]) s.pop();
R[i]=(s.empty()?n+1:s.top());
s.push(i);
}
rep(i,1,n) Fl[i]=a[i]*ll(i-L[i])+Fl[L[i]];
drep(i,n,1) Fr[i]=a[i]*ll(R[i]-i)+Fr[R[i]];
}
#undef cmp
inline ll queryL(int l,int r) /* [l+1,r]->[l,r] */
{
int pos=query(l,r),Rpos=R[pos];
return Fr[l]-Fr[Rpos]-a[pos]*ll(Rpos-1-r);
}
inline ll queryR(int l,int r) /* [l,r-1]->[l,r] */
{
int pos=query(l,r),Lpos=L[pos];
return Fl[r]-Fl[Lpos]-a[pos]*ll(l-1-Lpos);
}
int blo,pos[sz];
void Init(){blo=n/sqrt(m);rep(i,1,n) pos[i]=i/blo;}
struct hh{int l,r,id;}q[sz];
inline bool cmp(const hh &x,const hh &y){return pos[x.l]==pos[y.l]?((pos[x.l]&1)?x.r<y.r:x.r>y.r):pos[x.l]<pos[y.l];}
ll Ans[sz];
int main()
{
file();
read(n,m);
rep(i,1,n) read(a[i]);
int l,r;
rep(i,1,m) read(l,r),q[i]=(hh){l,r,i};
init();Init();sort(q+1,q+m+1,cmp);
ll ans=0;
int LL=1,RR=0;
rep(i,1,m)
{
int l=q[i].l,r=q[i].r;
while (LL>l) --LL,ans+=queryL(LL,RR);
while (RR<r)
++RR,ans+=queryR(LL,RR);
while (LL<l) ans-=queryL(LL,RR),++LL;
while (RR>r) ans-=queryR(LL,RR),--RR;
Ans[q[i].id]=ans;
}
rep(i,1,m) printf("%lld\n",Ans[i]);
return 0;
}
洛谷P3246 [HNOI2016]序列 [莫队]的更多相关文章
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- 洛谷 P3246 - [HNOI2016]序列(单调栈+前缀和)
题面传送门 这道题为什么我就没想出来呢/kk 对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- 洛谷P3246 [HNOI2016]序列
传送门 题解 //minamoto #include<iostream> #include<cstdio> #define ll long long using namespa ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)
题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
随机推荐
- C# UserControl集合属性使用
在UserControl中,定义集合属性时,如果直接使用List是检测不到在属性框中的列表修改变化的,可以通过 ObservableCollection() 实现 1.定义类 [Serializabl ...
- 【八】Spring Cloud Config
一.分布式系统面临的--配置问题 微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的力度相对较小,因此系统中会出现大量的服务.由于每个服务都需要必要的配置信息才能运行,所以一套集中式的.动 ...
- 23.Secondary Index
一. Secondary Index(二级索引)1.1. Secondary Index 介绍 • Clustered Index(聚集索引) ◦ 叶子节点存储所有记录(all row data) • ...
- idea 2018.1破解激活方法,有效期至2099年
优点:有效期至2099年,不出意外,这辈子肯定够用了 缺点:稍微麻烦些,不过不要紧,为了以后省事,都值了 下面是具体的破解激活步骤: 1. 下载破解补丁文件,路径为:http://idea.lanyu ...
- 20155324 2016-2017-2 《Java程序设计》第5周学习总结
20155324 2016-2017-2 <Java程序设计>第5周学习总结 教材学习内容总结 try.catch 1.求平均数程序示例 import java.util.Scanner; ...
- linux下mysql 配置
su root 加环境变量 在文件末尾加上如下两行代码 PATH=/usr/local/webserver/php/bin:$PATHexport PATH # /etc/profile 保存,重启 ...
- mysql库文件操作:
增 : create database db1 charset utf8; 查询: 当前创建的库 show create database db1; 所有: show databases; 改 ...
- Java开发环境配置(4)--Maven安装 环境变量配置,本地仓库配置---插件安装
说明在前:本人用过的 luna mars 等,都已经自带maven插件的了,以下有些文章是很老的,讲到maven插件的安装都可以忽略掉. maven安装eclipse在线配置maven搞定所有插件_ ...
- redis-set
Java HashSet 无序,不重复. Redis操作中,涉及到两个大数据集合的并集,交集,差集运算. 赋值: sadd key values[value1.value2…]:向set中添加数据, ...
- 用OZ工具制作openstack镜像
在部署openstack云平台环境的时候,需要上传镜像到glance. 首先下载iso镜像,这里下载了centos7.2镜像,放到/iso目录下 然后用OZ工具制作openstack的镜像 1.安装l ...