Problem

AtCoder-agc003F

题意:给出\(n\)行\(m\)列的01矩阵,一开始所有 \(1\) 连通,称此为\(1\)级分形,定义\(i\)级分形为\(i-1\)级分形中每个标示为 \(1\) 的格子中放一个 \(i-1\) 级分形(结合样例理解),求\(k\)级分形的连通块数量

Solution

网上好像都是矩阵快速幂的解法,然后一位集训中认识的dalao告诉我还有一种不用矩阵快速幂的解法:

首先发现分形中相接的地方一定是01矩阵某一行的左右端点或某一列的上下端点,我们管这些叫“接口”;在开始前先特判\(k=0\)或\(k=1\)

如果一个01矩阵既有上下接口又有左右接口,那么这个图形不管在几级分形下总会只有一个联通块;同样的,如果上下接口和左右接口都没有的话,那么这个图形不管在几级分形下不会相接,即设图形中 \(1\) 的数量为 \(S\),则 \(k\) 级分形的联通块个数为\(S^{k-1}\)(分形一次联通块个数乘\(S\))。现在剩下的情况中两种接口必定存在一个

设 \(c\) 为接口总数(一对算一个),\(S\)为01矩阵中 \(1\) 的数量,\(d\) 为块内连通个数(若仅有左右接口,则\(d\)为01矩阵中左右相邻两格都是 \(1\) 的对数;若仅有上下接口,则\(d\)为01矩阵中上下相邻两个都是 \(1\) 的对数)

设 \(f_i\) 表示 \(i\) 级分形到 \(i+1\) 级分形时,\(n\cdot m\)个 \(i\) 级分形之间连通的个数(因为之间多连通一对,那最终联通块个数减一)

则有

\[f_i=\begin{cases}
\ d, & i=1\\
\ f_{i-1}\cdot c, & i\geq 2
\end{cases}\]

由于在 \(i\) 级分形到第 \(i+1\) 级分形中合并的数量在 \(k\) 级分形中会被复制 \(S^{k-1-i}\) 次

所以答案为

\[Ans=S^{k-1}-\sum_{i=1}^{k-1}f_i\cdot S^{k-1-i}
\]

将 \(f_i=dc^{i-1}\) 代入,化简得

\[Ans=S^{k-1}-\sum_{i=1}^{k-1}dc^{i-1}\cdot S^{k-1-i}
\]

\[Ans=S^{k-1}-d\cdot c^{-1}\cdot S^{k-1}\cdot \sum_{i=1}^{k-1}c^i\cdot S^{-i}
\]

\[Ans=S^{k-1}-d\cdot c^{-1}\cdot S^{k-1}\cdot \sum_{i=1}^{k-1}(\frac cS)^i
\]

\[Ans=S^{k-1}-d\cdot c^{-1}\cdot S^{k-1}\cdot \frac {\frac cS-(\frac cS)^k}{1-\frac cS}
\]

\[Ans=S^{k-1}-\frac {d(S^{k-1}-c^{k-1})}{S-c}
\]

这样就只需要快速幂而非矩阵快速幂了

Code

#include <cstdio>
typedef long long ll; const int N=1010,p=1e9+7;
char s[N][N];
int n,m,d,c,S,col,row;
ll k; inline int qm(int x){return x<0?x+p:x;} template <typename _tp> inline int qpow(int A,_tp B){
int res(1);while(B){
if(B&1)res=1ll*res*A%p;
A=1ll*A*A%p,B>>=1;
}return res;
} int main(){
scanf("%d%d%lld",&n,&m,&k);
for(int i=1;i<=n;++i){
scanf("%s",s[i]+1);
for(int j=1;j<=m;++j)
if(s[i][j]=='#')++S;
}
for(int i=1;i<=n;++i)if(s[i][1]=='#'&&'#'==s[i][m])++row;
for(int i=1;i<=m;++i)if(s[1][i]=='#'&&'#'==s[n][i])++col;
if(!row&&!col){printf("%d\n",qpow(S,k-1));return 0;}
if(!k||(row&&col)){puts("1");return 0;}
if(row)
for(int i=1;i<=n;++i)
for(int j=1;j<m;++j)
d+=(s[i][j]=='#'&&s[i][j+1]=='#');
else
for(int i=1;i<n;++i)
for(int j=1;j<=m;++j)
d+=(s[i][j]=='#'&&s[i+1][j]=='#'); c=row?row:col; int ans=qm(qpow(S,k-1)-qpow(c,k-1)); ans=1ll*ans*d%p; ans=1ll*ans*qpow(qm(S-c),p-2)%p; printf("%d\n",qm(qpow(S,k-1)-ans));
return 0;
}

题解-AtCoder-agc003F Fraction of Fractal(非矩阵快速幂解法)的更多相关文章

  1. [AGC003F] Fraction of Fractal(矩阵乘法)

    Description Snuke从他的母亲那里得到了生日礼物--一个网格.网格有H行W列.每个单元格都是黑色或白色.所有黑色单元格都是四联通的,也就是说,只做水平或垂直移动且只经过黑色单元格即可从任 ...

  2. @atcoder - AGC003F@ Fraction of Fractal

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 H*W 黑白格图,保证黑格四连通. 定义分形如下:0 ...

  3. 题解——洛谷P3390 【模板】矩阵快速幂(矩阵乘法)

    模板题 留个档 #include <cstdio> #include <algorithm> #include <cstring> #define int long ...

  4. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  5. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

  6. Atcoder Grand Contest 003 F - Fraction of Fractal(矩阵乘法)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another AGC F,然鹅这次就没能自己想出来了-- 首先需注意到题目中有一个条件叫做"黑格子组成的连通块是四联通的&q ...

  7. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  8. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  9. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. Java Web之Web组件之间的跳转方式

    方法有3种: 第一种:请求转发 我们来写两个类,一个是Servlet1一个是Servlet2 package main.com.vae.forward; import javax.servlet.Se ...

  2. jspdf简单使用

    安装 npm install jspdf --save 英文输出 import jsPDF from 'jspdf-customfonts' let doc = new jsPDF() doc.tex ...

  3. vertica系列:时间相关函数

    -- * 注意: 本文的SQL是在 2017-09-14 测试的. 所以如果取当前日期, 结果为 2017-09-14* ------------------------------ 相关数据类型 - ...

  4. SQL中间

    -- 查询门诊挂号退费的账单:有4条记录 select * from `thc_rcm`.`Cs_AccountBill` a where a.orderSource = 1 and a.orderT ...

  5. getnameinfo函数

    一.函数原型 #include <netdb.h> int getnamefo(const struct sockaddr *sockaddr, socklen_t addrlen, ch ...

  6. GIT好文搜藏

    git图解:代码区域总结 https://zhuanlan.zhihu.com/p/20175919 git跟传统的代码管理器(如:svn)不同, 主要区别在于git多了个本地仓库以及缓存区,所以即使 ...

  7. Docker --rm 自动清理容器内部临时文件

    在Docker容器退出时,默认容器内部的文件系统仍然被保留,以方便调试并保留用户数据. 清除断掉链接的容器缓存

  8. html页面设置<span>的高度和宽度

    <span>标签属于行内元素(inline),所以无法设置高度和宽度:如果需要改变其宽高,就需要将其转变为块体元素(block)或行内块体元素(inle-block): 1 span{di ...

  9. [C++]线性链表之单链表

    [文档整理系列] 线性链表之单链表 /* 问题描述:线性表____链表_____单链表 @date 2017-3-7 */ #include<iostream> using namespa ...

  10. Linux之备份(tar)/解压与压缩(gzip,bzip2,xz)【待完善】

    [本博文,待完善] 以data原始文件为例,同tar备份,用xz压缩,实现备份->压缩整个过程的正向过程(生成.tar.xz)与其逆过程(先解压,后还原备份文件) 1.备份(tar) tar - ...