递归可视化之汉诺塔的动画实现(turtle海龟)
import turtle class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) ==
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - ]
def size(self):
return len(self.items) def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize()
t.speed()
t.goto(*(k-), )
t.down()
t.goto(*(k-), -)
t.goto(*(k-)-, -)
t.goto(*(k-)+, -)
drawpole_1()#画出汉诺塔的poles[]
drawpole_1()#画出汉诺塔的poles[]
drawpole_1()#画出汉诺塔的poles[] def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(,-i)
plates[i].goto(-,-+*i)
plates[i].showturtle()
return plates def pole_stack():#制造poles的栈
poles=[Stack() for i in range()]
return poles def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-)*,)
plates[mov].goto((tp-)*,)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-)*,-+*l) def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= :
moveTower(plates,poles,height-,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-,withPole,toPole,fromPole) myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[].push(i)
moveTower(plates,poles,n,,,)
myscreen.exitonclick()
运行结果(层数为5):

递归可视化之汉诺塔的动画实现(turtle海龟)的更多相关文章
- 递归--练习2--noi6261汉诺塔
递归--练习2--noi6261汉诺塔 一.心得 先把递推公式写出来,会很简单的 二.题目 6261:汉诺塔问题 总时间限制: 1000ms 内存限制: 65536kB 描述 约19世纪末,在欧州 ...
- py_递归实例:汉诺塔问题
递归的两个特点 调用自身 结束条件 # _*_coding:utf-8 ''' 递归实例:汉诺塔问题 n----盘子总数 a----第一个柱子 b----第二个柱子 c----第三个柱子 n个盘子时: ...
- 编程:递归编程解决汉诺塔问题(用java实现)
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; publ ...
- 学C记录(理解递归问题之汉诺塔)
汉诺游戏规则如下: 1.有三根相邻的柱子,标号为A,B,C. 2.A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘. 3.现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘 ...
- python中关于汉诺塔问题和使用turtle库实现其搬运过程
一.汉诺塔问题 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按 ...
- 关于C++的递归(以汉诺塔为例)
关于C++,hanoi塔的递归问题一直是个经典问题,我们学习数据结构的时候也会时常用到, 因为它的时间复杂度和空间复杂度都很高,我们在实际的应用中不推荐使用这种算法,移动n个盘子, 需要2的n次幂减一 ...
- C++入门经典-例4.3-函数的递归调用之汉诺塔问题
1:代码如下: // 4.3.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...
- Python实现汉诺塔问题的可视化(以动画的形式展示移动过程)
学习Python已经有一段时间了,也学习了递归的方法,而能够实践该方法的当然就是汉诺塔问题了,但是这次我们不只是要完成对汉诺塔过程的计算,还要通过turtle库来体现汉诺塔中每一层移动的过程. 一.设 ...
- 运用Turtle实现汉诺塔的可视化运行(递归算法)
运用Turtle实现汉诺塔的可视化运行(递归算法) 汉诺塔问题又名河内塔问题,是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...
随机推荐
- select、poll、epoll之间的区别总结[转载]
转载:https://www.cnblogs.com/Anker/p/3265058.html select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述 ...
- 2018-2019-2 20165312《网络攻防技术》Exp2 后门原理与实践
2018-2019-2 20165312<网络攻防技术>Exp2 后门原理与实践 课上知识点梳理总结 1.后门的概述 后门是指不经过正常认证流程而访问系统的通道 两个关键词:未认证.隐通道 ...
- linux 退出当前命令的编辑
有时候输入命令,linux既不响应命令,也不提示错误.可以用如下方法结束当前命令: ctrl+z挂起当前进程如果需要恢复到前台输入fg,恢复到后台输入bgctrl+c,彻底终止该进程
- mysql python 交互
一.安装 sudo apt-get install pymysql sudo pip3 install pymysql Connection对象 用于建立与数据库的连接 创建对象:调用connect( ...
- oracle SQL多表查询
SQL多表查询 1.集合理论 1.1 什么是集合 具有某种特定性质的事物的总体. 集合的特性:无序性.互异性.确定性. 一个集合可以小到从一个表中取出一行中的一列. 1 ro ...
- drf框架使用之 路飞学城(第一天)
1. 路飞学城第一天: 知识点 使用的是序列化与反序列化的使用: 1.创建一个公共相应的Json方法: #创建一个公共响应的类: class LuffyResponse(): def __init__ ...
- Pytorch_01 Tensor,Autograd,构建网络
Tensor Tensor是PyTorch中的重要数据结构,可认为是一个高维数组,Tensor与numpy的ndarrays类似,但Tensor可以使用GPU加速 import torch as t# ...
- python_练习04
选课系统 角色:学校.学员.课程.讲师 要求: 1.创建北京.上海2所学校 2.创建linux.python.go3个课程,linux.python在北京开,go在上海开3.课程包含,周期,价格,通过 ...
- mybatis中两种取值方式?谈谈Spring框架理解?
1.mybatis中两种取值方式? 回答:Mybatis中取值方式有几种?各自区别是什么? Mybatis取值方式就是说在Mapper文件中获取service传过来的值的方法,总共有两种方式,通过 $ ...
- 3.搭建Samba服务器
1.在CentOS7上yum安装samba服务: yum -y install samba 2.目前我是直接共享已经存在的目录,如果您需要共享一个未曾创建的目录,需要您新创建一个目录: vim /et ...