目录:

目录见文章1

这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解。

Mapreduce初析

  Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个输出(output),这个输出就是我们所需要的结果。

  我们要学习的就是这个计算模型的运行规则。在运行一个mapreduce计算任务时候,任务过程被分为两个阶段:map阶段和reduce阶段,每个阶段都是用键值对(key/value)作为输入(input)和输出(output)。而程序员要做的就是定义好这两个阶段的函数:map函数和reduce函数。

 1.准备 w.txt 文件,用于当测试数据

yaojiale hahaha
yaojiale llllll  

2.构建maven项目,将WordCount类打包成mrtest.jar.丢到hadoop所在服务器上

pom.xml

<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.3</version>
</dependency>
<!-- 加上这个就不报本地某错了 Cannot initialize Cluster
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-common -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.6.4</version>
</dependency>

WordCount.java 代码:

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordCount {
//WordCOuntMap方法接收LongWritable,Text的参数,返回<Text, IntWriatable>键值对。
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

 2.将w.txt放到hdfs下(folder下有w.txt文件)

bin/hdfs dfs -put /usr/software/folder input

然后查看

root@ubuntu:/usr/software/hadoop# bin/hdfs dfs -ls
Found 1 items
drwxr-xr-x - root supergroup 0 2018-07-16 21:50 input //内有w.txt文件

3.运行程序统计WordCount

bin/hadoop jar /usr/software/mrtest2.jar input output

然后查看可得


root@ubuntu:/usr/software/hadoop# bin/hdfs dfs -ls
Found 2 items
drwxr-xr-x - root supergroup 0 2018-07-16 21:50 input
drwxr-xr-x - root supergroup 0 2018-07-16 22:18 output


root@ubuntu:/usr/software/hadoop# bin/hdfs dfs -cat output/*
hahaha 1
llllll 1
yaojiale 2

 

完毕。

附录:附上一个hadoop自带的例子:

计算圆周率

 bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7..jar pi  1000

result:

 Estimated value of Pi is 3.14000000000000000000

参考文章:

Hadoop之MapReduce的HelloWorld(七)

代码详细解释

三.hadoop mapreduce之WordCount例子的更多相关文章

  1. hadoop学习第三天-MapReduce介绍&&WordCount示例&&倒排索引示例

    一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干 ...

  2. hadoop安装与WordCount例子

    1.JDK安装 下载网址: http://www.oracle.com/technetwork/java/javase/downloads/jdk-6u29-download-513648.html  ...

  3. Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况

    mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...

  4. RedHat 安装Hadoop并运行wordcount例子

    1.安装 Red Hat 环境 2.安装JDK 3.下载hadoop2.8.0 http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/had ...

  5. Hadoop Mapreduce中wordcount 过程解析

    将文件split 文件1:                                                                   分割结果: hello  world   ...

  6. Hadoop实战3:MapReduce编程-WordCount统计单词个数-eclipse-java-ubuntu环境

    之前习惯用hadoop streaming环境编写python程序,下面总结编辑java的eclipse环境配置总结,及一个WordCount例子运行. 一 下载eclipse安装包及hadoop插件 ...

  7. hadoop的wordcount例子运行

    可以通过一个简单的例子来说明MapReduce到底是什么: 我们要统计一个大文件中的各个单词出现的次数.由于文件太大.我们把这个文件切分成如果小文件,然后安排多个人去统计.这个过程就是”Map”.然后 ...

  8. 大数据技术 - 通俗理解MapReduce之WordCount(三)

    上一章我们编写了简单的 MapReduce 程序,掌握这些就能编写大多数数据处理的代码.但是 MapReduce 框架提供给用户的能力并不止如此,本章我们仍然以上一章 word count 为例,继续 ...

  9. Hadoop化繁为简(三)—探索Mapreduce简要原理与实践

    目录-探索mapreduce 1.Mapreduce的模型简介与特性?Yarn的作用? 2.mapreduce的工作原理是怎样的? 3.配置Yarn与Mapreduce.演示Mapreduce例子程序 ...

随机推荐

  1. 20165325 2017-2018-2 《Java程序设计》结对编程_第一周:四则运算

    一.码云链接 项目名称FAO 码云链接 二.需求分析 实现一个命令行程序: 自动生成小学四则运算题目(加.减.乘.除) 支持整数 支持多运算符(比如生成包含100个运算符的题目) 支持真分数 统计正确 ...

  2. LwIP Application Developers Manual8---Sample lwIP applications

    1.前言 你已经编译lwIP协议栈在你的目标平台上,并且网络驱动正常工作.你可以ping你的设备. 干得好,为你感到骄傲.虽然一个设备可以响应ping,但并不能算一个完整的应用. 现在你可以通过网络接 ...

  3. 使用Crash工具分析 Linux dump文件【转】

    转自:https://blog.csdn.net/bytxl/article/details/45025183 前言 Linux 内核(以下简称内核)是一个不与特定进程相关的功能集合,内核的代码很难轻 ...

  4. ansible 常见指令表

    Play 指令 说明 accelerate 开启加速模式 accelerate_ipv6 是否开启ipv6 accelerate_port 加速模式的端口 always_run   any_error ...

  5. html单选按钮用jQuery中prop()方法设置

    模拟单选按钮时用jQuery,prop方法来设置. 赋默认选中值:$("#" + id).find("input:radio[value='" + state ...

  6. git与eclipse集成之文件回退

    1.1. 文件回退 1.1.1.        添加或修改文件回退,选择要回退的文件,右键Overwrite 1.1.2.        删除文件回退 选择要回退的文件,右键Overwrite 文件变 ...

  7. WebApi中使用session

    webapi默认是不支持session的,要通过一些手动配置来开启Session功能 在Global.asax里添加: 导入命名空间: using System.Web.SessionState; p ...

  8. ASP.NET MVC5高级编程 之 视图

    1.1理解视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.这就提供 ...

  9. 如何保障Web应用安全性

    通过加密算法对关键数据进行加密 通过过滤器防御跨站脚本攻击XSS.跨域请求伪造CRSF和SQL注入 通过安全框架( Shiro.Spring Security )进行认证和授权 设置IP黑白名单来进行 ...

  10. VUE 多页面配置(一)

    1. 概述 1.1 说明 项目开发过程中会遇到需要多个主页展示情况,故在vue单页面的基础上进行配置多页面开发以满足此需求. 2. 实例 2.1 页面配置 2.1.1 默认首页 使用vue脚手架搭建后 ...