Overcoming catastrophic forgetting in neural networks(克服神经网络中的灾难性遗忘)

原文:

https://www.pnas.org/content/pnas/early/2017/03/13/1611835114.full.pdf

翻译:

https://www.dengfanxin.cn/?p=368

 
 

摘要:

以顺序方式学习任务的能力对于人工智能的发展至关重要。直到现在,神经网络还没有能力做到这一点,人们普遍认为,灾难性遗忘是连接模型(connectionist models,即神经网络)的一个不可避免的特征。我们表明,有可能克服这种限制,训练能够保持长期未经历的任务专业知识的网络。我们的方法通过选择性地减慢对于这些任务重要的权重的学习来记住旧任务。我们通过一组基于手写数字数据集的分类任务以及依次学习几个Atari 2600游戏来证明我们的方法具有可扩展性和有效性。

 
 

摘取自翻译:

在实现通用智能时,神经网络需要持续学习的能力。

 
 

持续学习:学习连贯的任务而不会忘记如何执行之前训练过的任务的能力。

 
 

灾难性遗忘(catastrophic forgetting):在一个顺序无标注的、可能随机切换的、同种任务可能长时间不复现的
任务序列中,AI对当前任务B进行学习时,对先前任务A的知识会突然地丢失的现象。通常发生在对任务A很重要的神经网络的权重正好满足任务B的目标时。

 
 

当前解决办法是:训练时可同时获得多个任务的数据(与SHL-MDNN在一个batch中包括所有任务的数据这一做法类似),即使得权重对所有任务进行联合优化(多任务学习范式-深度学习技术)。但这中方法不适用于大规模任务

 
 

与人工神经网络形式鲜明对比的是人类和其他动物似乎能够以连续的方式学习[11]。最近的证据提示哺乳动物的大脑可能会通过大脑皮层回路来保护先前获得的知识,从而避免灾难性遗忘[11-14]。当小鼠需要一个新技能的时候,一定比例的突触就会增强,表现为单一神经元的树突棘数量的增加[13]。至关重要的是,即使进行了后续的其他任务的学习,这些增加了的树突棘能够得到保持,以便几个月后相关能力仍然得到保留。当这些树突棘被选择性"擦除"后,相关的技能就会被遗忘[11,12]。这表明对这些增强的突触的保护对于任务能力的保留至关重要。这些实验发现与诸如瀑布模型[15, 16]这样的神经生物学模型提示我们大脑皮层中的持续学习依赖于任务相关突触的巩固,知识能够长久地编码得益于让一部分突触降低可塑性从而在相当长的时间范围内变得稳定。

本次工作将展示任务相关突触巩固为人工智能的持续学习问题提供了独特的解决方案。我们为人工智能神经网络开发了一种类似于突触巩固的算法,称之为可塑权重巩固(elastic weight consolidation,EWC)。这个算法会针对那些对特定任务特别重要的特定权重降低学习率。也会展示EWC如何应用在监督学习和强化学习问题中,在不会遗忘旧任务的情况下,按次序地训练多个任务,并与之前的深度学习技术进行对比。

 
 

灾难性遗忘(catastrophic forgetting)的更多相关文章

  1. Overcoming Forgetting in Federated Learning on Non-IID Data

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...

  2. 论文笔记之:Progressive Neural Network Google DeepMind

    Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic f ...

  3. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  4. A Bayesian Approach to Deep Neural Network Adaptation with Applications to Robust Automatic Speech Recognition

    基于贝叶斯的深度神经网络自适应及其在鲁棒自动语音识别中的应用     直接贝叶斯DNN自适应 使用高斯先验对DNN进行MAP自适应 为何贝叶斯在模型自适应中很有用? 因为自适应问题可以视为后验估计问题 ...

  5. 深度自适应增量学习(Incremental Learning Through Deep Adaptation)

    深度自适应增量学习(Incremental Learning Through Deep Adaptation) 2018-05-25 18:56:00 木呆呆瓶子 阅读数 10564  收藏 更多 分 ...

  6. 论文翻译:2021_MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement

    论文地址:MetricGAN+:用于语音增强的 MetricGAN 的改进版本 论文代码:https://github.com/JasonSWFu/MetricGAN 引用格式:Fu S W, Yu ...

  7. 【一周聚焦】 联邦学习 arxiv 2.16-3.10

    这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟 ...

  8. Markdown 尝试

    目录 简介 参数模型 vs. 非参数模型 创新点 at the modeling level at the training procedure 模型结构 attention kernel Full ...

  9. 论文笔记系列-iCaRL: Incremental Classifier and Representation Learning

    导言 传统的神经网络都是基于固定的数据集进行训练学习的,一旦有新的,不同分布的数据进来,一般而言需要重新训练整个网络,这样费时费力,而且在实际应用场景中也不适用,所以增量学习应运而生. 增量学习主要旨 ...

随机推荐

  1. 洛谷P2762 太空飞行计划问题

    这题套路好深......没想渠. 题意:给你若干个设备,若干个任务. 每个任务需要若干设备,设备可重复利用. 完成任务有钱,买设备要钱. 问最大总收益(可以什么任务都不做). 解:最大权闭合子图. 对 ...

  2. latex 导入pdf

    pdflatex \includepdf[addtotoc={1,section,1,something would show in catalog,cc},pages=-,offset=0cm 0. ...

  3. Linux系统调用之内存管理

    brk 改变数据段空间的分配 sbrk 参见brk mlock 内存页面加锁 munlock 内存页面解锁 mlockall 调用进程所有内存页面加锁 munlockall 调用进程所有内存页面解锁 ...

  4. 工具类:Colletions ,Arrays(静态导入,可变参数,强循环)

    一.Collecti 专门用来操作集合的工具类,没有构造函数,全静态方法. 常用方法: static <T extends Comparable<? super T>> voi ...

  5. pytest 3.fixture介绍一 conftest.py

    前言: 前面一篇pytest2 讲到用例加setup和teardown可以实现在测试用例之前或之后加入一些操作,但这种是整个脚本全局生效的,如果我想实现以下场景: 用例1需要先登录,用例2不需要登录, ...

  6. 开发问题及解决--java.lang.IllegalStateException: Circular dependencies cannot exist in RelativeLayout

    <?xml version="1.0" encoding="utf-8"?> <ScrollView xmlns:android=" ...

  7. 新建工程时报错(26, 13) Failed to resolve: com.android.support:appcompat-v7:28.+ ,

    allprojects { repositories { jcenter() maven { url "https://maven.google.com" } } }

  8. day-17(基础加强)

    回顾: listener(了解) 监听器,监听javaweb中三个域对象 监听对象的创建和销毁 ServletContextListener 在项目启动的时候加载配置文件 ServletRequest ...

  9. 2018ccpc秦皇岛站后记

    总的来说这不是一场体验十分好的比赛. 定的宾馆有一点小,学校提供的伙食人太多了,不想排队,饭票又不能换香蕉,就没有吃. 到的第一天遇到了价格向上取整和到站不打发票的两个黑车司机,让我对这个地点好感大减 ...

  10. CodeForces922E DP//多重背包的二进制优化

    https://cn.vjudge.net/problem/1365218/origin 题意 一条直线上有n棵树 每棵树上有ci只鸟 在一棵树底下召唤一只鸟的魔法代价是costi 每召唤一只鸟,魔法 ...