传送门:here

简述题意:                                                                                           

给定一张$ n$个点,$ m$条边$ (2<=n,m<=5*10^5)$的无向连通图

有$ k(1<=k<=5*10^5)$次询问

每次询问一个边集$ S(\sum\limits_{i=1}^k|S_i|<=5*10^5)$,判断这些边能否共存于原图的某棵最小生成树上

并查集撤销上一次操作:                                                                      

不能像普通并查集一样路径压缩,因此只能按址合并

每次把size较小的接到size较大的下面

同时开个栈记录被接上去的点的标号

撤销上一次操作的时候直接把栈顶的标号的father重标成自己同时减小原father的size值即可

题解:                                                                                                 

先简化题意:假设每次询问的边集大小均为1

思考克鲁斯卡尔的原理

首先对所有边按边权从小到大排序

克鲁斯卡尔告诉我们一条当前可插入的边权最小的边,插入一定不会不优

因而一条边权为x的边可以在最小生成树内当且仅当把所有权值严格小于x的边插入生成树后加入这条边依然不会形成环

也就是说边权不同的边相互独立,从小到大贪心即可

因此我们把询问离线排序,从小到大判断每次询问对应的边可否插入,可插入则该次询问为YES且插入,否则该次询问一定为NO

如果有两条边边权相同怎么办?

直接检验不一定正确,因为前一条边不一定必选,而之前程序已经将其插入

因此需要撤销上一次并查集的合并操作,然后再检验下一条边

回到原题

我们知道边集大小不一定为1

依然按边权排序,在每条询问边标记询问标号

由于之前提到不同边权相互独立,因此只要某组询问的每一种边权对应的边可以全选,最终也一定可行

反之只要一个询问中有一条边不合法则不可行

因此像上面一样排序后从小到大扫即可

注意同一个询问的相同边权的边检验必须一起做,全部做完之后再一起撤销

因为在同一个询问里同一种边权是不独立的,必须全部插入后依然不形成环才可行

code:                                                                                                 

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rt register int
#define l putchar('\n')
#define ll long long
#define M 1000010
using namespace std;
inline ll read()
{
register ll x = ; char zf = ; char ch;
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
int i,j,k,m,n,x,y,z,cnt,la[M],fa[M],size[M],top,g=;
int ask(int x)
{
while(fa[x]!=x)x=fa[x];
return x;
}
void merge(int x,int y)
{
if(x==y)return;
if(size[x]>size[y])swap(x,y);la[++top]=x;
fa[x]=y;size[y]+=size[x];
}
void undo()
{
int La=la[top];
size[fa[La]]-=size[La];
fa[La]=La;top--;
}
struct ed
{
int x,y,z;
inline bool operator <(const ed s)const
{
return z<s.z;
}
}q[M]; struct query
{
int id,x,y,val;
inline bool operator <(const query s)const
{
if(val==s.val)return id<s.id;
return val<s.val;
}
}A[M];
int ans[M];
int main()
{
n=read();m=read();
for(rt i=;i<=n;i++)size[i]=,fa[i]=i;
for(rt i=;i<=m;i++)
{
x=read();y=read();z=read();
q[i]={x,y,z};
} k=read();
for(rt e=;e<=k;e++)
{
z=read();ans[e]=;
for(rt i=;i<=z;i++)
{
x=read();
A[++cnt]={e,q[x].x,q[x].y,q[x].z};
}
}
sort(q+,q+m+);
sort(A+,A+cnt+);
int qd=;
for(rt i=;i<=cnt;)
{
while(q[qd].z<A[i].val)
merge(ask(q[qd].x),ask(q[qd].y)),qd++; top=;
do
{ int p1=ask(A[i].x),q1=ask(A[i].y);
if(p1==q1)ans[A[i].id]=;
merge(p1,q1);
i++;
}while(A[i].val==A[i-].val&&A[i].id==A[i-].id);
while(top)undo();
}
for(rt i=;i<=k;i++)puts(ans[i]?"YES":"NO");
return ;
}

Codeforces891C(892E)的更多相关文章

  1. Codeforces891C. Envy

    $n \leq 5e5$,$m \leq 5e5$的无向边权图,$q \leq 5e5$个询问,每次问一系列边是否能同时存在于某棵最小生成树上. 一条边在最小生成树上,当比他小的边都加入后,加入他会使 ...

  2. codeforces 892E(离散化+可撤销并查集)

    题意 给出一个n个点m条边的无向联通图(n,m<=5e5),有q(q<=5e5)个询问 每个询问询问一个边集{Ei},回答这些边能否在同一个最小生成树中 分析 要知道一个性质,就是权值不同 ...

  3. Codeforces 892E Envy

    问题描述 小Q正在玩一个叠塔的游戏,游戏的目标是叠出尽可能高的塔.在游戏中,一共有n张矩形卡片,其中第i张卡片的 长度为a_i,宽度为b_i.小Q需要把所有卡片按一定顺序叠成一座塔,要求对于任意一个矩 ...

  4. REORG TABLESPACE on z/os

    这个困扰了我两天的问题终于解决了,在运行这个job时:总是提示 A REQUIRED DD CARD OR TEMPLATE IS MISSING NAME=SYSDISC A REQUIRED DD ...

  5. Neutron命令测试5

    jolin@jolin:/$ route -nKernel IP routing tableDestination Gateway Genmask Flags Metric Ref Use Iface ...

  6. Neutron命令测试4

    jolin@jolin:~$ route -nKernel IP routing tableDestination Gateway Genmask Flags Metric Ref Use Iface ...

随机推荐

  1. 第四篇 - 爬取前程无忧python相关工作

    环境:python3    pycharm 模块:requests,xlwt,urllib.request,re 正常三步走: 1.获取源代码 2.匹配源代码,获得目标数据 3.存储到文件中 直接上代 ...

  2. 使用WinForm Chart控件 制作饼装,柱状,折线图

    http://blog.csdn.net/dream2050csdn/article/details/53510340 chart控件的属性很多,主要用到Chart控件图表区域的属性有五个属性 1.A ...

  3. Linux 系统设置sh文件开机自启动

    工作中有一个linux下的服务需要启动,但是机器总是断电,导致需要反复启动,找了一下开机自启动的方法,解决了这个问题.Linux设置开机自启动非常简单,只要找到rc.local文件,将你需要自启动的文 ...

  4. Explicit Constructors(显式构造函数)

    按照默认规定,只有一个参数的构造函数也定义了一个隐式转换,将该构造函数对应数据类型的数据转换为该类对象,如下面所示:class String {String ( const char* p ); // ...

  5. 简单贪心) Repair the Wall hdu2124

    Repair the Wall http://acm.hdu.edu.cn/showproblem.php?pid=2124 Time Limit: 5000/1000 MS (Java/Others ...

  6. Java基础super关键字、final关键字、static关键字、匿名对象整理

    super关键字 10.1子父类中构造方法的调用 public class Test { public static void main(String[] args) { new Zi(); } } ...

  7. go 学习资源和GitHub库

    go httprouter 源码包 https://github.com/julienschmidt/httprouter 用例 https://github.com/gsingharoy/httpr ...

  8. 信用评分卡 (part 6 of 7)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  9. beeswarm-蜜蜂图

    一.beeswarm作为一维散点图包R包,可以生成点不重复的图,与stripchart的区别就是等值点不会重叠到一起,下图展示了stripchart与beeswarm图的区别: stripchart( ...

  10. Hadoop问题:Input path does not exist: hdfs://Master:9000/user/hadoop/input

    问题描述: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: hdfs:/ ...