https://vjudge.net/problem/TopCoder-12891

暴力想法是:dp[i][s1][s2]前i个,第一个集合xor是s1,第二个集合xor是s2方案数O(n^3)

有xor

不妨按位考虑

枚举两个集合xor的LCP长度L

考虑从高到低前L位相同,第L+1位xor(X)=0,xor(Y)=1的方案数

剩下的低位就随便选择了

f[i][s][0/1][0/1]表示前i个数,前L位高位的xor和是s,第L+1位分别是0/1,0/1的方案数

每一个合法的方案都会被枚举到恰好一次。

复杂度:O(logn*n*(n/logn)=n^2)

代码:
(Topcoder还要class。。。)

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
const int mod=1e9+;
const int N=;
int n,m;
int ans=;
int f[N][][][];
int mo(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
class WinterAndSnowmen {
public:
int getNumber(int n, int m) { int U=max(n,m);
for(reg p=;p>=;--p){
memset(f,,sizeof f);
f[][][][]=;
for(reg i=;i<U;++i){//calc i+1
for(reg s=;s<(<<(-p));++s){
for(reg l1=;l1<=;++l1){
for(reg l2=;l2<=;++l2){
int num=i+;
f[i+][s][l1][l2]=mo(f[i+][s][l1][l2],f[i][s][l1][l2]);
if(i+<=n)f[i+][s^(num>>(p+))][l1^((num>>p)&)][l2]=mo(f[i+][s^(num>>(p+))][l1^((num>>p)&)][l2],f[i][s][l1][l2]);
if(i+<=m)f[i+][s^(num>>(p+))][l1][l2^((num>>p)&)]=mo(f[i+][s^(num>>(p+))][l1][l2^((num>>p)&)],f[i][s][l1][l2]);
}
}
}
}
ans=mo(ans,f[U][][][]);
}
return ans;
}
};

WinterAndSnowmen的更多相关文章

  1. [SRM603] WinterAndSnowmen

    Description Sol 设 \(A=\text{XOR}(X)\),\(B=\text{XOR}(Y)\). 因为 \(A<B\),所以写下他们的二进制表示,一定是最高的几位先是相等,紧 ...

  2. 【做题】TCSRM601 Div1 500 WinterAndSnowmen——按位考虑&dp

    原文链接https://www.cnblogs.com/cly-none/p/9695526.html 题意:求有多少对集合\(S,T\)满足:\(S \subseteq \{1,2...n \}, ...

  3. SRM 601(1-250pt,500pt)

    DIV1 250pt 题意:有很多袋子,里面装有苹果和橘子(也可能没有),给出每个袋子里有多少个苹果,多少个橘子.如果每个袋子里含有水果的总数都不小于x个,则可以从每个袋子里都拿出x个水果(拿出苹果和 ...

  4. SRM 601 DIV1

    A 枚举x , 然后对于确定的x , 最后总的apple数对应了唯一的orange数,因此问题转化为求apple的取值范围; apple的取值范围: max为每个bag取最多的apple , min为 ...

  5. 来自多校的一个题——数位DP+卡位

    n<=1e9就要考虑倍增.矩阵乘法这种了 假设L=0 考虑枚举二进制下,所有X与R的LCP长度,前len高位 对于第len+1位,假设R的这一位是1 如果一个x的这一位是0了,那么后面可以随便填 ...

  6. Topcoder SRM 601 div1题解

    日常TC计划- Easy(250pts): 题目大意:有n个篮子,每个篮子有若干个苹果和橘子,先任取一个正整数x,然后从每个篮子中选出x个水果,把nx个水果放在一起,输出一共有多少种不同的组成方案.其 ...

随机推荐

  1. class面向对象-1

    一.基本定义 class cl(object): def __init(self,var) self.var=var def func(self,i) print('%s is in %s'%(i,s ...

  2. jenkins结合svn检测版本变化执行shell脚本实现项目部署

    工具: centos 7 jenkins-2.138.2-1.1.noarch.rpm,2018年10月10号最新版(简单rpm包安装见https://www.cnblogs.com/dannylin ...

  3. 莫烦theano学习自修第九天【过拟合问题与正规化】

    如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...

  4. 老男孩python学习自修第六天【pycharm的使用】

    1.在工程右键可选新建文件夹,包盒python文件 文件夹和包的区别在于,包包含一个空的__init__.py文件,而文件夹没有 2.pycharm的断点调试 点击Debug表示进入调试状态 点击Re ...

  5. java.lang.AbstractMethodError: org.mybatis.spring.transaction.SpringManagedTransaction.getTimeout()Ljava/lang/Integer; at org.apache.ibatis.executor.SimpleExecutor.prepareStatement(SimpleExecutor.jav

    在整合spring和mybatis在执行数据库操作的时候报出了: java.lang.AbstractMethodError: org.mybatis.spring.transaction.Sprin ...

  6. 如何安装或卸载Lodop、C-Lodop

    安装:下载.exe安装文件,一步步安装就行,如不特意拦截,应该是100%可以安装成功.客户端本地打印角色等,直接一步步安装就行,如果是广域网AO打印那种,在服务器上安装的c-lodop,需要勾选服务器 ...

  7. Lodop打印设计里的 打印项对齐

    打印设计界面里,有四个对齐的图标:(1)第一个图标是左右对齐方式,该图标下有四种左右对齐方式.(2)第二个图标是上下对齐方式,该图标下有四种上下对齐方式.(3)第三个图标是等宽对齐,该图标下有三种等宽 ...

  8. Nginx 磁盘IO的优化

    L:132

  9. Nginx 用分片提示缓存效率

    L:107 slice 模块 Syntax:slice size;Default: slice 0; Context:http, server, location 功能:通过range协议将大文件分解 ...

  10. python数据类型知识整理

    python数据类型种类 int数字.bool布尔值.dict字典.tunple元组.set集合.list列表.字符串 int数字 #常用来进制转换 num = 11 #转化成2进制 bin_num ...