sklearn机器学习-泰坦尼克号
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share


randomForest.py
调参后,预测最高准确性也达到了89%
随机森林的参数

# -*- coding: utf-8 -*-
"""
Created on Sat Mar 31 09:30:24 2018 @author: Administrator
随机森林不需要预处理数据
"""
#导入数据预处理,包括标准化处理或正则处理
from sklearn import preprocessing
from sklearn.preprocessing import Imputer
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14) #读取变量名文件
varibleFileName="titantic.xlsx"
#读取目标文件
targetFileName="target.xlsx"
#读取excel
data=pd.read_excel(varibleFileName)
data_dummies=pd.get_dummies(data)
print('features after one-hot encoding:\n',list(data_dummies.columns))
features=data_dummies.ix[:,"Pclass":'Embarked_S']
x=features.values #数据预处理
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(x)
x=imp.transform(x) target=pd.read_excel(targetFileName)
y=target.values
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
names=features.columns trees=1000
max_depth=10
#n_estimators表示树的个数,测试中100颗树足够
forest=RandomForestClassifier(n_estimators=trees,random_state=0,max_depth=max_depth)
forest.fit(x_train,y_train) print("random forest with %d trees:"%trees)
print("accuracy on the training subset:{:.3f}".format(forest.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(forest.score(x_test,y_test)))
#print('Feature importances:{}'.format(forest.feature_importances_)) names=features.columns
importance=forest.feature_importances_
zipped = zip(importance,names)
list1=list(zipped) list1.sort(reverse=True)
#print(list1) n_features=data_dummies.shape[1]
plt.barh(range(n_features),forest.feature_importances_,align='center')
plt.yticks(np.arange(n_features),features)
plt.title("random forest with %d trees,%dmax_depth:"%(trees,max_depth))
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.show() '''
random forest with 1000 trees:
accuracy on the training subset:0.983
accuracy on the test subset:0.878 random forest with 1000 trees,max_depth=4:
accuracy on the training subset:0.854
accuracy on the test subset:0.884 random forest with 1000 trees,max_depth=5:
accuracy on the training subset:0.853
accuracy on the test subset:0.887 random forest with 1000 trees,max_depth=9
accuracy on the training subset:0.871
accuracy on the test subset:0.890
'''
去掉覆盖率低的变量后,随机森林准确性反而下降,看了随机森林不需要去计算变量覆盖率
训练数据准确性0.983
测试数据准确性0.878
'''
random forest with 1000 trees:
accuracy on the training subset:0.983
accuracy on the test subset:0.878
'''
重要因子来看,性别第一,占据40%重要性,
年龄重要性18%左右,
票价重要性17%左右

logistic.py
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 29 22:39:35 2018 @author: Administrator
""" # -*- coding: utf-8 -*-
"""
Created on Sat Mar 31 09:30:24 2018 @author: Administrator
随机森林不需要预处理数据
"""
from sklearn.linear_model import LogisticRegression
#导入数据预处理,包括标准化处理或正则处理
from sklearn import preprocessing
from sklearn.preprocessing import Imputer
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import pandas as pd
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14) #读取变量名文件
varibleFileName="titantic.xlsx"
#读取目标文件
targetFileName="target.xlsx"
#读取excel
data=pd.read_excel(varibleFileName)
data_dummies=pd.get_dummies(data)
print('features after one-hot encoding:\n',list(data_dummies.columns))
features=data_dummies.ix[:,"Pclass":'Embarked_S']
x=features.values #数据预处理
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(x)
x=imp.transform(x) target=pd.read_excel(targetFileName)
y=target.values
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
names=features.columns #n_estimators表示树的个数,测试中100颗树足够
logistic=LogisticRegression()
logistic.fit(x_train,y_train) print("logistic:")
print("accuracy on the training subset:{:.3f}".format(logistic.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(logistic.score(x_test,y_test))) '''
logistic:
accuracy on the training subset:0.850
accuracy on the test subset:0.875
'''
目前效果最好的是去掉低覆盖率的变量后,SVM准确率最高0.89
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 31 09:30:24 2018 @author: Administrator
随机森林不需要预处理数据
"""
from sklearn.svm import SVC
#导入数据预处理,包括标准化处理或正则处理
from sklearn import preprocessing
from sklearn.preprocessing import Imputer
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import pandas as pd
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14) #读取变量名文件
varibleFileName="titantic.xlsx"
#读取目标文件
targetFileName="target.xlsx"
#读取excel
data=pd.read_excel(varibleFileName)
data_dummies=pd.get_dummies(data)
print('features after one-hot encoding:\n',list(data_dummies.columns))
features=data_dummies.ix[:,"Pclass":'Embarked_S']
x=features.values #数据预处理
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(x)
x=imp.transform(x) target=pd.read_excel(targetFileName)
y=target.values
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
names=features.columns svm=SVC()
svm.fit(x_train,y_train)
print("svc:")
print("accuracy on the training subset:{:.3f}".format(svm.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(svm.score(x_test,y_test))) '''
svc:
accuracy on the training subset:0.900
accuracy on the test subset:0.726
''' #标准化数据
X_train_scaled = preprocessing.scale(x_train)
x_test_scaled = preprocessing.scale(x_test)
svm1=SVC()
svm1.fit(X_train_scaled,y_train)
#改变C参数,调优,kernel表示核函数,用于平面转换,probability表示是否需要计算概率
svm1=SVC()
svm1.fit(X_train_scaled,y_train)
print("accuracy on the scaled training subset:{:.3f}".format(svm1.score(X_train_scaled,y_train)))
print("accuracy on the scaled test subset:{:.3f}".format(svm1.score(x_test_scaled,y_test))) '''
accuracy on the scaled training subset:0.866
accuracy on the scaled test subset:0.881
'''
#改变C参数,调优,kernel表示核函数,用于平面转换,probability表示是否需要计算概率
svm2=SVC(C=10,gamma="auto",kernel='rbf',probability=True)
svm2.fit(X_train_scaled,y_train)
print("after c parameter=10,accuracy on the scaled training subset:{:.3f}".format(svm2.score(X_train_scaled,y_train)))
print("after c parameter=10,accuracy on the scaled test subset:{:.3f}".format(svm2.score(x_test_scaled,y_test))) '''
after c parameter=10,accuracy on the scaled training subset:0.878
after c parameter=10,accuracy on the scaled test subset:0.890
'''
xgboost1.py
效果也相当好
AUC: 0.9464
ACC: 0.8841
Recall: 0.8716
F1-score: 0.8716
Precesion: 0.8716
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 31 09:30:24 2018 @author: Administrator
随机森林不需要预处理数据
"""
import xgboost as xgb
#导入数据预处理,包括标准化处理或正则处理
from sklearn import preprocessing
from sklearn.preprocessing import Imputer
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import pandas as pd
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14) #读取变量名文件
varibleFileName="titantic.xlsx"
#读取目标文件
targetFileName="target.xlsx"
#读取excel
data=pd.read_excel(varibleFileName)
data_dummies=pd.get_dummies(data)
print('features after one-hot encoding:\n',list(data_dummies.columns))
features=data_dummies.ix[:,"Pclass":'Embarked_S']
x=features.values #数据预处理
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(x)
x=imp.transform(x) target=pd.read_excel(targetFileName)
y=target.values
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
names=features.columns dtrain=xgb.DMatrix(x_train,label=y_train)
dtest=xgb.DMatrix(x_test) params={'booster':'gbtree',
#'objective': 'reg:linear',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'max_depth':4,
'lambda':10,
'subsample':0.75,
'colsample_bytree':0.75,
'min_child_weight':2,
'eta': 0.025,
'seed':0,
'nthread':8,
'silent':1} watchlist = [(dtrain,'train')] bst=xgb.train(params,dtrain,num_boost_round=100,evals=watchlist) ypred=bst.predict(dtest) # 设置阈值, 输出一些评价指标
y_pred = (ypred >= 0.5)*1 #模型校验
print ('AUC: %.4f' % metrics.roc_auc_score(y_test,ypred))
print ('ACC: %.4f' % metrics.accuracy_score(y_test,y_pred))
print ('Recall: %.4f' % metrics.recall_score(y_test,y_pred))
print ('F1-score: %.4f' %metrics.f1_score(y_test,y_pred))
print ('Precesion: %.4f' %metrics.precision_score(y_test,y_pred))
metrics.confusion_matrix(y_test,y_pred) print("xgboost:")
print('Feature importances:{}'.format(bst.get_fscore())) '''
AUC: 0.9464
ACC: 0.8841
Recall: 0.8716
F1-score: 0.8716
Precesion: 0.8716
xgboost:
Feature importances:{'f5': 69, 'f1': 178, 'f2': 68, 'f4': 245, 'f6': 25, 'f0': 88, 'f3': 25, 'f194': 4, 'f193': 21, 'f195': 9}
'''
决策树
decisionTree.py
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 30 19:04:10 2018 @author: Administrator
"""
from sklearn.tree import export_graphviz
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Imputer
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt #读取变量名文件
varibleFileName="titantic.xlsx"
#读取目标文件
targetFileName="target.xlsx"
#读取excel
data=pd.read_excel(varibleFileName)
data_dummies=pd.get_dummies(data)
print('features after one-hot encoding:\n',list(data_dummies.columns))
features=data_dummies.ix[:,"Pclass":'Embarked_S']
x=features.values #数据预处理
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
imp.fit(x)
x=imp.transform(x) target=pd.read_excel(targetFileName)
y=target.values
X_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
#变量名
names=features.columns #调参
list_average_accuracy=[]
depth=range(1,30)
for i in depth:
#max_depth=4限制决策树深度可以降低算法复杂度,获取更精确值
tree= DecisionTreeClassifier(max_depth=i,random_state=0)
tree.fit(X_train,y_train)
accuracy_training=tree.score(X_train,y_train)
accuracy_test=tree.score(x_test,y_test)
average_accuracy=(accuracy_training+accuracy_test)/2.0
#print("average_accuracy:",average_accuracy)
list_average_accuracy.append(average_accuracy) max_value=max(list_average_accuracy)
#索引是0开头,结果要加1
best_depth=list_average_accuracy.index(max_value)+1
print("best_depth:",best_depth) best_tree= DecisionTreeClassifier(max_depth=best_depth,random_state=0)
best_tree.fit(X_train,y_train)
accuracy_training=best_tree.score(X_train,y_train)
accuracy_test=best_tree.score(x_test,y_test) print("decision tree:")
print("accuracy on the training subset:{:.3f}".format(best_tree.score(X_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(best_tree.score(x_test,y_test))) '''
best_depth: 19
decision tree:
accuracy on the training subset:0.976
accuracy on the test subset:0.860
''' #绘图,显示因子重要性
n_features=x.shape[1]
plt.barh(range(n_features),best_tree.feature_importances_,align='center')
plt.yticks(np.arange(n_features),features)
plt.title("Decision Tree:")
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.show() #生成一个dot文件,以后用cmd形式生成图片
export_graphviz(best_tree,out_file="Titanic.dot",class_names=['death','live'],feature_names=names,impurity=False,filled=True)


python风控评分卡建模和风控常识
sklearn机器学习-泰坦尼克号的更多相关文章
- Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测
0.引言 利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑: 使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用pytho ...
- 使用sklearn机器学习库实现线性回归
import numpy as np # 导入科学技术框架import matplotlib.pyplot as plt # 导入画图工具from sklearn.linear_model imp ...
- Python线性回归算法【解析解,sklearn机器学习库】
一.概述 参考博客:https://www.cnblogs.com/yszd/p/8529704.html 二.代码实现[解析解] import numpy as np import matplotl ...
- 用python+sklearn(机器学习)实现天气预报数据 模型和使用
用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...
- 用python+sklearn(机器学习)实现天气预报数据 数据
用python+sklearn机器学习实现天气预报 数据 项目地址 系列教程 勘误表 0.前言 1.爬虫 a.确认要被爬取的网页网址 b.爬虫部分 c.网页内容匹配取出部分 d.写入csv文件格式化 ...
- 用python+sklearn(机器学习)实现天气预报 准备
用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn j ...
- 5分钟教你玩转 sklearn 机器学习(上)
假期结束,你的状态有没有回归?那么,放空脑袋后,先来学习学习,欢迎大家继续关注腾讯云技术社区. 作者:赵成龙 这是一篇很难写的文章,因为我希望这篇文章能对大家有所帮助.我不会给大家介绍机器学习,数据挖 ...
- 编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归
知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scik ...
- sklearn机器学习-特征提取1
scikit-learn机器学习的特征提取部分较多nlp内容,故学到一半学不下去,看完nltk再来补上 scikit-learn机器学习的特征提取这一章感觉讲的不是特别好,所以会结合着来看 首先是Di ...
随机推荐
- Nginx 反向代理如何连接上游服务器
L:92 想上游服务器先建立TCP连接 如三次握手 下面指令可以控制握手时间 proxy_next_upstream 指令当出现502可以换个上游服务器 Tcp keepalive 一般都是由进程在 ...
- AMD直奔5nm!这一步棋下得妙
AMD今年将推出采用7nm工艺的第二代EPYC霄龙.第三代Ryzen锐龙处理器,其中后者已经在CES 2019上公开首秀,性能追评i9-9900K,功耗则低得多. 虽然被称为“女友”的GlobalFo ...
- Freemake Video Converter视频转换软件下载地址及去广告
下载地址:http://download.freemake.net/FreemakeOriginals2/LS/FreemakeVideoConverterFull.exe 去片头及片尾广告:删除安装 ...
- Json.net 反序列化 部分对象
主要通过 Jobject获取想要序列化的部分对象. 直接上代码 static void Main(string[] args) { //先反序列化看看 string json = "{\&q ...
- Spring01-Ioc基本使用
一. Spring简介 1. Spring介绍 Spring框架主页: Spring官网 Spring资源地址:下载地址 Spring框架,由Rod Johnson开发 Spring是一个非常活跃的开 ...
- 牛客网noip集训4
T1 (A)[https://www.nowcoder.com/acm/contest/175/A] 给出 l, r, k,请从小到大输出所有在 [l, r] 范围内,能表示为 k 的非负整数次方的所 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
- 【HDU1846】Brave Game(博弈论)
题面 HDU 题解 \(Bash\ Game\)模板题 #include<iostream> using namespace std; int T,n,m; int main() { io ...
- PHP日志切割shell
#!/bin/bash#此脚本用于自动分割php日志,error.log#每天00:01执行此脚本 将前一天的errors.log重命名为errors-xxxx-xx-xx.log格式,并重新打开日志 ...
- bzoj3959(LCT)
题目描述 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上熙熙攘攘,摩肩接踵,盛况空前. 为 ...
