洛谷P4726 【模板】多项式指数函数(多项式exp)
题意
Sol
多项式exp,直接套泰勒展开的公式
\(F(x) = e^{A(x)}\)
求个导\(F'(x) = A(x)\)
我们要求的就是\(G(f(x)) = lnF(x) - A(x)\)的零点。
然后把\(F(x)\)看做变量\(A(x)\)看做长度(什么鬼啊qwq)
\(G'(F(x)) = \frac{1}{F(x)}\)
然后就可以牛顿迭代啦
\]
\]
因为题目保证了\(A(0) = 0\),所以\(F(x)\)的常数项为1.
然鹅代码看不懂qwq
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, INF = 1e9 + 10;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int a[MAXN], b[MAXN];
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], D[MAXN], lim;
const int G = 3, mod = 998244353;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P;
return base;
}
int GetLen(int x) {
int lim = 1;
while(lim < x) lim <<= 1;
return lim;
}
int GetOrigin(int x) {//¼ÆËãÔ¸ù
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void Init(/*int P,*/ int Lim) {
//mod = P; G = GetOrigin(mod); Gi = fp(G, mod - 2);
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
Inv(a, b, len >> 1);
for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
NTT(A, len << 1, -1);
for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i]));
for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
}
void Dao(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
}
void Ji(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
}
void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
static int A[MAXN], B[MAXN];
Dao(a, A, len);
Inv(a, B, len);
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
NTT(B, len << 1, -1);
Ji(B, b, len << 1);
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
if(len == 1) return (void) (b[0] = 1);
Exp(a, b, len >> 1); Ln(b, C, len);
C[0] = add(a[0] + 1, -C[0]);
for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
NTT(C, len << 1, 1); NTT(b, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
NTT(b, len << 1, -1);
for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
}
};
using namespace Poly;
signed main() {
int N = read();
for(int i = 0; i < N; i++) a[i] = read();
Init(4 * N);
Exp(a, b, GetLen(N));
for(int i = 0; i < N; i++) cout << b[i] << " ";
return 0;
}
洛谷P4726 【模板】多项式指数函数(多项式exp)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- [洛谷P4726]【模板】多项式指数函数
题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv e^{A(x)}$. 题解:(by Weng_weijie) 泰勒展 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
随机推荐
- Eclipse 常用快捷键使用说明
注释快捷键 Ctrl + / 选中代码后快速加//注释, 再次用取消//注释 Ctrl + Shift + / 选中代码后快速加/* */注释 Ctrl + Shift + \ 选中代码后快速取消/* ...
- MySQL如何使用索引
初始化测试数据 创建一个测试用的表 create table dept(id int primary key auto_increment , deptName varchar(32) not nul ...
- 应用监控CAT之cat-home源码阅读(三)
上两章从点到点讲了,cat-client 到 cat-consumer 的请求处理过程,但是怎么样让我们监控给人看到呢?那么就需要一个展示的后台了,也就是本章要讲的 cat-home 模块 ! 带 ...
- 关键字New,如阴魂不散
本文是溪源翻译的第一篇技术文章,查看原文,因时间仓促,也许翻译过程措辞不当,还请见谅. 当你使用类似于C#或VisualBasic这种强类型语言,在实例化对象时,你往往会使用New这个关键字.我敢保证 ...
- 使用 SharpZipLib 打包数据到 ZIP 文件
SharpZipLib 是一个优秀的开源的第三方压缩库,可以通过这个库将一些导出的文件打包到一个 ZIP 文件当中供用户下载. GitHub 地址:https://github.com/icsharp ...
- android WebView详解,常见漏洞详解和安全源码
这篇博客主要来介绍 WebView 的相关使用方法,常见的几个漏洞,开发中可能遇到的坑和最后解决相应漏洞的源码,以及针对该源码的解析. 转载请注明出处:http://blog.csdn.net/se ...
- [译]ASP.NET Core Web API 中使用Oracle数据库和Dapper看这篇就够了
[译]ASP.NET Core Web API 中使用Oracle数据库和Dapper看这篇就够了 本文首发自:博客园 文章地址: https://www.cnblogs.com/yilezhu/p/ ...
- 解决关于 ionic3 启动白屏 控制台错误提示:Uncaught SyntaxError Use of const in strict mode.
今天将项目从ionic2 升级为ionic3 ,ionic serve 运行在网页上无任何错误. 但是将项目打包成为android apk 却一直卡在启动页面 白屏,进不去的情况.后来在android ...
- html标签详解(1)
http标签详解及讲解 1.基础标签 <!DOCTYPE html> <!--表示文本类型--> <html> <!--<html> ...
- 打成Jar包后运行报错 Unable to locate Spring NamespaceHandler for XML schema namespace
MAVEN项目,在IDEA中运行正常,但是把它打成jar包后再运行就会出现异常: Exception in thread "main" org.springframework. ...