【机器学习基本理论】详解最大后验概率估计(MAP)的理解
【机器学习基本理论】详解最大后验概率估计(MAP)的理解
https://blog.csdn.net/weixin_42137700/article/details/81628065
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。 下文将详细说明MLE和MAP的思路与区别。上篇讲解了MLE的相应知识。【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解 下面讲解最大后验概率MAP的相关知识。 1最大后验概率估计 最大似然估计是求参数theta, 使似然函数p(x0|theta)最大。 最大后验概率估计则是想求theta使得p(x0|theta)p(theta)最大。
求得的theta不单单让似然函数大,theta自己出现的先验概率也得大。 (这有点像正则化里加惩罚项的思想,不过正则化里是利用加法,而MAP里是利用乘法)
MAP其实是在最大化p(theta|x0)=p(x0|theta)p(theta)/p(x0),不过因为x0是确定的(即投出的“反正正正正反正正正反”),p(x0)是一个已知值,所以去掉了分母p(x0) (假设“投10次硬币”是一次实验,实验做了1000次,“反正正正正反正正正反”出现了n次, 则p(x0)=n/1000总之,这是一个可以由数据集得到的值)。最大化p(theta|x0)的意义也很明确,x0已经出现了,要求theta取什么值使p(theta|x0)最大。顺带一提,p(theta|x0)即后验概率,这就是“最大后验概率估计”名字的由来。
对于投硬币的例子来看,我们认为(”先验地知道“)theta取取0.5的概率很大,取其他值的概率小一些。我们用一个高斯分布来具体描述我们掌握的这个先验知识,例如假设p(theta)为均值0.5,方差0.1的高斯函数,如下图:
则p(x0|theta)p(theta)的函数图像为:
注意,此时函数取最大值时,theta取值已向左偏移,不再是0.7。实际上,在theta=0.558时函数取得了最大值。即,用最大后验概率估计,得到theta=0.558。
最后,那要怎样才能说服一个贝叶斯派相信theta=0.7呢? 你得多做点实验。。
如果做了1000次实验,其中700次都是正面向上,这时似然函数为:
如果仍然假设p(theta)为均值0.5,方差0.1的高斯函数,则p(x0|theta)p(theta)的函数图像为:
在theta=0.696,p(x0|theta)p(theta)取得最大值。
这样,就算一个考虑了先验概率的贝叶斯派,也不得不承认得把theta估计在0.7附近了。
PS. 要是遇上了顽固的贝叶斯派,认为p(theta=0.5)=1,那就没得玩了。。 无论怎么做实验,使用MAP估计出来都是theta=0.5。这也说明,一个合理的先验概率假设是很重要的。(通常,先验概率能从数据中直接分析得到)
2最大似然估计和最大后验概率估计的区别 相信读完上文,MLE和MAP的区别应该是很清楚的了。 MAP就是多个作为因子的先验概率p(theta)。 或者,也可以反过来,认为MLE是把先验概率p(theta)认为等于1,即认为theta为均匀分布,无论theta为何值,p(theta)均为1 文章地址:http://blog.csdn.net/u011508640/article/details/72815981
【机器学习基本理论】详解最大后验概率估计(MAP)的理解的更多相关文章
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [PXE] Linux(centos6)中PXE 服务器搭建,PXE安装、启动及PXE理论详解
[PXE] Linux(centos6)中PXE 服务器搭建,PXE安装.启动及PXE理论详解 本篇blog主要讲述了[PXE] linux(centos)PXE无盘服务器搭建,安装,启动及pxe协议 ...
- 机器学习03 /jieba详解
机器学习03 /jieba详解 目录 机器学习03 /jieba详解 1.引言 2.分词 2.1.jieba.cut && jieba.cut_for_search 2.2.jieba ...
- 图解机器学习 | LightGBM模型详解
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-det ...
- JVM的GC理论详解
GC的概念 GC:Garbage Collection 垃圾收集.这里所谓的垃圾指的是在系统运行过程当中所产生的一些无用的对象,这些对象占据着一定的内存空间,如果长期不被释放,可能导致OOM(堆溢出) ...
- awk理论详解、实战
答疑解惑: 为什么用awk取IP的时候用$4? ifconfig eth0 | awk -F '[ :]+' 'NR==2{print $4}' IP第二行内容如下: inet addr:10.0.0 ...
- Java集合排序及java集合类详解--(Collection, List, Set, Map)
1 集合框架 1.1 集合框架概述 1.1.1 容器简介 到目前为止,我们已经学习了如何创建多个不同的对象,定义了这些对象以后,我们就可以利用它们来做一 ...
- Java基础学习总结(53)——HTTPS 理论详解与实践
前言 在进行 HTTP 通信时,信息可能会监听.服务器或客户端身份伪装等安全问题,HTTPS 则能有效解决这些问题.在使用原始的HTTP连接的时候,因为服务器与用户之间是直接进行的明文传输,导致了用户 ...
- 机器学习|线性回归算法详解 (Python 语言描述)
原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 ...
随机推荐
- oo第二单元的自白
电梯第一次作业 第一次电梯较为简单,主要目的在于初步接触多线程,可以实现一些简单的操作. 在本次作业中,为了更好的了解多线程,我也阅读了一些代码,并据此仿写完成了第一次作业. 根据生产者和消费者的模式 ...
- 机器学习入门06 - 训练集和测试集 (Training and Test Sets)
原文链接:https://developers.google.com/machine-learning/crash-course/training-and-test-sets 测试集是用于评估根据训练 ...
- 机器学习基石笔记:03 Types of Learning
原文地址:https://www.jianshu.com/p/86b2a9cef742 一.学习的分类 根据输出空间\(Y\):分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据 ...
- win 10 升级远程连接服务器 要求的函数不受支持
首先展示错误信息: win10更新系统后,之前连接的服务器都连接不上了,应该用一下方法解决: 运行 gpedit.msc,打开本地组策略:计算机配置>管理模板>系统>凭据分配> ...
- 《CLR Via C#》读书笔记:24.运行时序列化
一.什么是运行时序列化 序列化的作用就是将对象图(特定时间点的对象连接图)转换为字节流,这样这些对象图就可以在文件系统/网络进行传输. 二.序列化/反序列化快速入门 一般来说我们通过 FCL 提供的 ...
- Java核心技术及面试指南 流程控制方面的面试题答案
2.2.5.1 switch语句能否作用在byte上,能否作用在long上,能否作用在String上? 1 switch里可以用char,byte,short,int这些基本类型,以及它们的封装类. ...
- json_decode与json_encode容易被忽视的点
一.json_decode的使用,json_decode共有4个参数 json_decode ( string $json [, bool $assoc=FALSE [, int $depth= 51 ...
- ZOJ Problem Set - 1730 Crazy Tea Party
#include<cstdio> int main(){ int T,n; scanf("%d",&T); while(T--){ scanf("%d ...
- 使用 trash 避免 rm -rf 悲剧
昨晚做了一个令人痛心疾首的操作,rm -rf something,把我个人电脑里的重要文件夹给删掉了,懵逼了半天才缓过来.还好是个人文件,不对公司造成影响.这件事也让我意识到 rm -rf 确实是个高 ...
- HTTPS过程以及详细案例
1.HTTPS的过程 1.客户端向服务端发送请求,客户端主要向服务器提供以下信息: 支持的协议版本,比如TLS 1.0版. 一个客户端生成的随机数,稍后用于生成"对话密钥". 支持 ...