在opencv3中的机器学习算法练习:对OCR进行分类
OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别。得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图像的像素值序列可以直接作为特征。但直接将整个图像作为特征数据维度太高,计算量太大,所以也可以进行一些降维处理,减少输入的数据量。
处理过程一般这样:先对原图像进行裁剪,得到字符的ROI图像,二值化。然后将图像分块,统计每个小块中非0像素的个数,这样就形成了一个较小的矩阵,这矩阵就是新的特征了。opencv为我们提供了一些这样的数据,放在
\opencv\sources\samples\data\letter-recognition.data
这个文件里,打开看看:
每一行代表一个样本。第一列大写的字母,就是标注,随后的16列就是该字母的特征向量。这个文件中总共有20000行样本,共分类26类(26个字母)。
我们将这些数据读取出来后,分成两部分,第一部分16000个样本作为训练样本,训练出分类器后,对这16000个训练数据和余下的4000个数据分别进行测试,得到训练精度和测试精度。其中adaboost比较特殊一点,训练和测试样本各为10000.
完整代码为:
#include "stdafx.h"
#include "opencv2\opencv.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::ml; // 读取文件数据
bool read_num_class_data(const string& filename, int var_count,Mat* _data, Mat* _responses)
{
const int M = ;
char buf[M + ]; Mat el_ptr(, var_count, CV_32F);
int i;
vector<int> responses; _data->release();
_responses->release();
FILE *f;
fopen_s(&f, filename.c_str(), "rt");
if (!f)
{
cout << "Could not read the database " << filename << endl;
return false;
} for (;;)
{
char* ptr;
if (!fgets(buf, M, f) || !strchr(buf, ','))
break;
responses.push_back((int)buf[]);
ptr = buf + ;
for (i = ; i < var_count; i++)
{
int n = ;
sscanf_s(ptr, "%f%n", &el_ptr.at<float>(i), &n);
ptr += n + ;
}
if (i < var_count)
break;
_data->push_back(el_ptr);
}
fclose(f);
Mat(responses).copyTo(*_responses);
return true;
} //准备训练数据
Ptr<TrainData> prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
{
Mat sample_idx = Mat::zeros(, data.rows, CV_8U);
Mat train_samples = sample_idx.colRange(, ntrain_samples);
train_samples.setTo(Scalar::all()); int nvars = data.cols;
Mat var_type(nvars + , , CV_8U);
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(nvars) = VAR_CATEGORICAL; return TrainData::create(data, ROW_SAMPLE, responses,
noArray(), sample_idx, noArray(), var_type);
} //设置迭代条件
inline TermCriteria TC(int iters, double eps)
{
return TermCriteria(TermCriteria::MAX_ITER + (eps > ? TermCriteria::EPS : ), iters, eps);
} //分类预测
void test_and_save_classifier(const Ptr<StatModel>& model, const Mat& data, const Mat& responses,
int ntrain_samples, int rdelta)
{
int i, nsamples_all = data.rows;
double train_hr = , test_hr = ; // compute prediction error on train and test data
for (i = ; i < nsamples_all; i++)
{
Mat sample = data.row(i); float r = model->predict(sample);
r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? .f : .f; if (i < ntrain_samples)
train_hr += r;
else
test_hr += r;
} test_hr /= nsamples_all - ntrain_samples;
train_hr = ntrain_samples > ? train_hr / ntrain_samples : .; printf("Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*., test_hr*.);
} //随机树分类
bool build_rtrees_classifier(const string& data_filename)
{
Mat data;
Mat responses;
read_num_class_data(data_filename, , &data, &responses); int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8); Ptr<RTrees> model;
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = RTrees::create();
model->setMaxDepth();
model->setMinSampleCount();
model->setRegressionAccuracy();
model->setUseSurrogates(false);
model->setMaxCategories();
model->setPriors(Mat());
model->setCalculateVarImportance(true);
model->setActiveVarCount();
model->setTermCriteria(TC(, 0.01f));
model->train(tdata);
test_and_save_classifier(model, data, responses, ntrain_samples, );
cout << "Number of trees: " << model->getRoots().size() << endl; // Print variable importance
Mat var_importance = model->getVarImportance();
if (!var_importance.empty())
{
double rt_imp_sum = sum(var_importance)[];
printf("var#\timportance (in %%):\n");
int i, n = (int)var_importance.total();
for (i = ; i < n; i++)
printf("%-2d\t%-4.1f\n", i, .f*var_importance.at<float>(i) / rt_imp_sum);
} return true;
} //adaboost分类
bool build_boost_classifier(const string& data_filename)
{
const int class_count = ;
Mat data;
Mat responses;
Mat weak_responses; read_num_class_data(data_filename, , &data, &responses);
int i, j, k;
Ptr<Boost> model; int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.5);
int var_count = data.cols; Mat new_data(ntrain_samples*class_count, var_count + , CV_32F);
Mat new_responses(ntrain_samples*class_count, , CV_32S); for (i = ; i < ntrain_samples; i++)
{
const float* data_row = data.ptr<float>(i);
for (j = ; j < class_count; j++)
{
float* new_data_row = (float*)new_data.ptr<float>(i*class_count + j);
memcpy(new_data_row, data_row, var_count*sizeof(data_row[]));
new_data_row[var_count] = (float)j;
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j + 'A';
}
} Mat var_type(, var_count + , CV_8U);
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count + ) = VAR_CATEGORICAL; Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
noArray(), noArray(), noArray(), var_type);
vector<double> priors();
priors[] = ;
priors[] = ; model = Boost::create();
model->setBoostType(Boost::GENTLE);
model->setWeakCount();
model->setWeightTrimRate(0.95);
model->setMaxDepth();
model->setUseSurrogates(false);
model->setPriors(Mat(priors));
model->train(tdata);
Mat temp_sample(, var_count + , CV_32F);
float* tptr = temp_sample.ptr<float>(); // compute prediction error on train and test data
double train_hr = , test_hr = ;
for (i = ; i < nsamples_all; i++)
{
int best_class = ;
double max_sum = -DBL_MAX;
const float* ptr = data.ptr<float>(i);
for (k = ; k < var_count; k++)
tptr[k] = ptr[k]; for (j = ; j < class_count; j++)
{
tptr[var_count] = (float)j;
float s = model->predict(temp_sample, noArray(), StatModel::RAW_OUTPUT);
if (max_sum < s)
{
max_sum = s;
best_class = j + 'A';
}
} double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? : ;
if (i < ntrain_samples)
train_hr += r;
else
test_hr += r;
} test_hr /= nsamples_all - ntrain_samples;
train_hr = ntrain_samples > ? train_hr / ntrain_samples : .;
printf("Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*., test_hr*.); cout << "Number of trees: " << model->getRoots().size() << endl;
return true;
} //多层感知机分类(ANN)
bool build_mlp_classifier(const string& data_filename)
{
const int class_count = ;
Mat data;
Mat responses; read_num_class_data(data_filename, , &data, &responses);
Ptr<ANN_MLP> model; int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
Mat train_data = data.rowRange(, ntrain_samples);
Mat train_responses = Mat::zeros(ntrain_samples, class_count, CV_32F); // 1. unroll the responses
cout << "Unrolling the responses...\n";
for (int i = ; i < ntrain_samples; i++)
{
int cls_label = responses.at<int>(i) -'A';
train_responses.at<float>(i, cls_label) = .f;
} // 2. train classifier
int layer_sz[] = { data.cols, , , class_count };
int nlayers = (int)(sizeof(layer_sz) / sizeof(layer_sz[]));
Mat layer_sizes(, nlayers, CV_32S, layer_sz); #if 1
int method = ANN_MLP::BACKPROP;
double method_param = 0.001;
int max_iter = ;
#else
int method = ANN_MLP::RPROP;
double method_param = 0.1;
int max_iter = ;
#endif Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
model = ANN_MLP::create();
model->setLayerSizes(layer_sizes);
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, , );
model->setTermCriteria(TC(max_iter, ));
model->setTrainMethod(method, method_param);
model->train(tdata);
return true;
} //K最近邻分类
bool build_knearest_classifier(const string& data_filename, int K)
{
Mat data;
Mat responses;
read_num_class_data(data_filename, , &data, &responses);
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8); Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
Ptr<KNearest> model = KNearest::create();
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tdata); test_and_save_classifier(model, data, responses, ntrain_samples, );
return true;
} //贝叶斯分类
bool build_nbayes_classifier(const string& data_filename)
{
Mat data;
Mat responses;
read_num_class_data(data_filename, , &data, &responses); int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8); Ptr<NormalBayesClassifier> model;
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = NormalBayesClassifier::create();
model->train(tdata); test_and_save_classifier(model, data, responses, ntrain_samples, );
return true;
} //svm分类
bool build_svm_classifier(const string& data_filename)
{
Mat data;
Mat responses;
read_num_class_data(data_filename, , &data, &responses); int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8); Ptr<SVM> model;
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR);
model->setC();
model->train(tdata); test_and_save_classifier(model, data, responses, ntrain_samples, );
return true;
} int main()
{
string data_filename = "E:/opencv/opencv/sources/samples/data/letter-recognition.data"; //字母数据 cout << "svm分类:" << endl;
build_svm_classifier(data_filename); cout << "贝叶斯分类:" << endl;
build_nbayes_classifier(data_filename); cout << "K最近邻分类:" << endl;
build_knearest_classifier(data_filename,); cout << "随机树分类:" << endl;
build_rtrees_classifier(data_filename); //cout << "adaboost分类:" << endl;
//build_boost_classifier(data_filename); //cout << "ANN(多层感知机)分类:" << endl;
//build_mlp_classifier(data_filename);
}
由于adaboost分类和 ann分类速度非常慢,因此我在main函数里把这两个分类注释掉了,大家有兴趣和时间可以测试一下。
结果:
从结果显示来看,测试的四种分类算法中,KNN(最近邻)分类精度是最高的。所以说,对ocr进行识别,还是用knn最好。
在opencv3中的机器学习算法练习:对OCR进行分类的更多相关文章
- 在opencv3中的机器学习算法
在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier 我已在另外一篇博文中介 ...
- opencv3中的机器学习算法之:EM算法
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- scikit-learn中的机器学习算法封装——kNN
接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html 回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特 ...
- 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...
- 在opencv3中实现机器学习之:利用svm(支持向量机)分类
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变. opencv中的svm分类代码,来源于libsvm. #include "s ...
- 在opencv3中实现机器学习之:利用正态贝叶斯分类
opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "op ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 简单易学的机器学习算法——基于密度的聚类算法DBSCAN
一.基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...
随机推荐
- iOS开发网络篇—搭建本地服务器(待整理)
一.简单说明 说明:提前下载好相关软件,且安装目录最好安装在全英文路径下.如果路径有中文名,那么可能会出现一些莫名其妙的问题. 提示:提前准备好的软件 apache-tomcat-6.0.41.t ...
- 建立JDBC的环境配置和相关下载(Mac)
首先已经安装好XMAPP和Workbench. 1.打开MySQL,然后打开Workbench: 然后我们需要下载MySQL的JDBC驱动. 1.进入MySQL官网:http://dev.mysql. ...
- svn错误
在myEclipse客户端第一次连到SVN时,如:svn://192.168.20.242/MyProject1,然后要求输入用户名和密码.如果用户名和密码输入出错了,强行确定后.问题来了!会出现,以 ...
- debian和ubuntu的sh dash bash
Ubuntu和debian 的 shell 默认安装的是 dash,而不是 bash.运行以下命令查看 sh 的详细信息,确认 shell 对应的程序是哪个:$ls -al /bin/sh dash ...
- C#照片批量压缩小工具
做了一个照片批量压缩工具,其实核心代码几分钟就完成了,但整个小工具做下来还是花了一天的时间.中间遇到了大堆问题,并寻求最好的解决方案予以解决.现在就分享一下这个看似简单的小工具所使用的技术. 软件界面 ...
- oracle中的数值函数整理
主要分为三块介绍(单值函数.聚合函数.列表函数) 一.单值函数(比较简单,看一遍基本也就理解记住了) 1.基本加减乘车没有什么可说的,只需要注意一点,任何值与null一起运算 ,结果都为null,因为 ...
- 软件测试Lab2
1.本次上机实验任务:使用webDriver完后自动化测试 2.本次上机实验目的:掌握webDriver的用法和配置. 3.本次上机实验内容: 3.1Selenium的安装: 首先我们上Seleniu ...
- 使用MongoDB C#官方驱动操作MongoDB
想要在C#中使用MongoDB,首先得要有个MongoDB支持的C#版的驱动.C#版的驱动有很多种,如官方提供的,samus. 实现思路大都类似.这里我们先用官方提供的mongo-csharp-dri ...
- HTTP Session原理
深入理解HTTP Session session在web开发中是一个非常重要的概念,这个概念很抽象,很难定义,也是最让人迷惑的一个名词,也是最多被滥用的名字之一,在不同的场合,session一次的 ...
- JavaScript中判断为整数的多种方式
之前记录过JavaScript中判断为数字类型的多种方式,这篇看看如何判断为整数类型(Integer). JavaScript中不区分整数和浮点数,所有数字内部都采用64位浮点格式表示,和Java的d ...