Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C

| | | | | | |

A G T * C * T G A C G C

Deletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C

| | | | | | |

A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

题目大意:给两个字符串s1、s2,输出最小编辑距离。

思路:DP,用dp[i][j]代表s1[1..i]和s2[1..j]的最小编辑距离。那么若删除s1[i],那么dp[i][j] = dp[i - 1][j] + 1,若添加s2[j],那么dp[i][j] = dp[i][j - 1] + 1。若用s2[j]替换s1[i],那么dp[i][j] = dp[i - 1][j - 1] + 1。若s1[i] = s2[j],不操作,则dp[i][j] = dp[i - 1][j - 1]。取最小值。初始化dp[0][0] = 0,dp[i][0] = i,dp[0][j] = j。复杂度$O(n^2)$。

PS:求LCS那个是错的。比如abd、acb,LCS是2,对应答案是1。但实际上答案是2,只能说明数据太水了。

代码(0MS):

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = ; char s1[MAXN], s2[MAXN];
int dp[MAXN][MAXN];
int n, m; int main() {
while(scanf("%d%s", &n, s1 + ) != EOF) {
scanf("%d%s", &m, s2 + );
dp[][] = ;
for(int i = ; i <= n; ++i) dp[i][] = i;
for(int j = ; j <= m; ++j) dp[][j] = j;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
dp[i][j] = min(dp[i - ][j] + , dp[i][j - ] + );
dp[i][j] = min(dp[i][j], dp[i - ][j - ] + (s1[i] != s2[j]));
}
}
printf("%d\n", dp[n][m]);
}
}

POJ 3356 AGTC(DP-最小编辑距离)的更多相关文章

  1. POJ 3356 AGTC(DP求字符串编辑距离)

    给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...

  2. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

  3. POJ 3356.AGTC

    问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...

  4. 牛客寒假算法基础集训营2 【处女座与复读机】DP最小编辑距离【模板题】

    链接:https://ac.nowcoder.com/acm/contest/327/G来源:牛客网 一天,处女座在牛客算法群里发了一句“我好强啊”,引起无数的复读,可是处女座发现复读之后变成了“处女 ...

  5. poj 3356 AGTC(线性dp)

    题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...

  6. POJ 3356 AGTC(最长公共子)

    AGTC Description Let x and y be two strings over some finite alphabet A. We would like to transform  ...

  7. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  8. POJ 3356 水LCS

    题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  9. lintcode:最小编辑距离

    最小编辑距离 给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数. 你总共三种操作方法: 插入一个字符 删除一个字符 替换一个字符 样例 给出 work1=&quo ...

随机推荐

  1. <from>;<input>;readonly:只读;disabled:不可用;checked:用来做选中;selected:用在下拉列表中,设置那一项被选中

    表单元素: ①②③④⑤⑥⑦★ 一.<from> 1. 代表表单 2 . action:提交为哪个页面 method:①  get :显示提交,由长度限制 ②  post: 隐藏提交 二.文 ...

  2. pro8

    1.本次课学到的知识点 函数程序设计 结构化程序设计思想 程序解析 局部变量和全局变量 2.实验过程中遇到的问题及解决方法 实验过程中会遇到自定义函数的逻辑错误 与缺少定义变量 从主函数开始理清函数关 ...

  3. mysql case when用法

    SELECT CASE WHEN `categoryid` =1THEN '参赛队员'ELSE '指导老师'END FROM `blog_article` WHERE 1

  4. isset和empty比较

    PHP的isset()函数 一般用来检测变量是否设置 格式:bool isset ( mixed var [, mixed var [, ...]] ) 功能:检测变量是否设置 返回值: 若变量不存在 ...

  5. C++ 简单 Hash容器的实现

    主要实现了以整数为关键字的hash,以key%m_nSize为哈希函数,以(hash(key)+i)%m_nSize重新寻址,并附带了elf_hash的实现,使用过程中可灵活修改. #ifndef _ ...

  6. H264(NAL简介与I帧判断)

    1.NAL全称Network Abstract Layer, 即网络抽象层.         在H.264/AVC视频编码标准中,整个系统框架被分为了两个层面:视频编码层面(VCL)和网络抽象层面(N ...

  7. SQL PROMPT 取消dbo前缀

    SQL Prompt 无疑大大提高了开发者的效率,高效而简单,特别适合大型的数据库脚本编写,但遗憾得是至今没有可供使用的中文版本.SQL Prompt 默认对象名前面会有 dbo 前缀,在一些场合这样 ...

  8. Windows-005-显示隐藏文件

    此文主要讲述如何设置 Win7 系统显示隐藏的文件.文件夹和驱动器,敬请亲们参阅.若有不足之处,敬请大神指正,不胜感激!详情如下: Win7 系统安装完成后,默认是不显示隐藏的文件.文件夹和驱动器的( ...

  9. linux i2c tools

    最近要操作eeprom,所以了解一下i2c-tool的使用方法,记录于此. 参考链接: http://www.myir-tech.com/bbs/thread-7567-1-1.html http:/ ...

  10. angularJs:动态效果之:显示与隐藏(该例对比了普通赋值,层次赋值,事件的写法对比)

    testShowAndHiddern.html <!DOCTYPE html> <html ng-app="MyModule"> <head> ...