Silver Cow Party

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.
 
求两次最短路,第一次求x到其余各点的最短路,第二次求各点到x的最短路。前者易于解决,直接应用spfa或其他最短路算法即可,后者要先将邻接矩阵转置再执行最短路算法。
为什么进行矩阵转置?比如u(u != x)到x的最短路为<u,v1>,<v1,v2>,<v2,v3>,...,<vi, x>,这条路径在转置邻接矩阵后变成<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>.于是乎,在转置邻接矩阵后,执行最短路算法求出x到u的最短路<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>即可得到转置前u到x的最短路。
 
     #include <iostream>
#include <deque>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAXV = ;
const int inf = 0x3f3f3f3f;
int t[MAXV][MAXV], d1[MAXV], d2[MAXV];
int que[MAXV<<];
bool in[MAXV];
int n, m, x; void spfa(int * d)
{
memset(in, false, sizeof(in));
memset(d + , inf, sizeof(int) * n);//memset(d, inf, sizeof(d)) if wrong
d[x] = ;
int tail = -;
que[++tail] = x;
in[x] = true;
while(tail != -){
int cur = que[tail];
tail--;
in[cur] = false;
for(int i = ; i <= n; i++){
if(d[cur] + t[cur][i] < d[i]){
d[i] = d[cur] + t[cur][i];
if(in[i] == false){
que[++tail] = i;
in[i] = true;
}
}
}
}
} void tran()
{
int i, j;
for(i = ; i <= n; i++){
for(j = ; j <= i; j++){
swap(t[i][j], t[j][i]);
}
}
} int main()
{
while(scanf("%d %d %d", &n, &m, &x) != EOF){
memset(t, inf, sizeof(t));
while(m--){
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
t[a][b] = c;
}
spfa(d1);
tran();
spfa(d2);
int ans = -;
for(int i = ; i <= n; i++){
if(d1[i] != inf && d2[i] != inf)
ans = max(ans, d1[i] + d2[i]);
}
printf("%d\n", ans);
}
return ;
}
 
 

Silver Cow Party(最短路,好题)的更多相关文章

  1. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  2. POJ3268 Silver Cow Party —— 最短路

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  3. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  4. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  5. (poj)3268 Silver Cow Party 最短路

    Description One cow ≤ N ≤ ) conveniently numbered ..N ≤ X ≤ N). A total of M ( ≤ M ≤ ,) unidirection ...

  6. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  7. TZOJ 1693 Silver Cow Party(最短路+思维)

    描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big ...

  8. USACO 2011 February Silver Cow Line /// 康拓展开模板题 oj22713

    题目大意: 输入n k,1-n的排列,k次操作 操作P:输入一个m 输出第m个排列 操作Q:输入一个排列 输出它是第几个排列 Sample Input 5 2P3Q1 2 5 3 4 Sample O ...

  9. B - B Silver Cow Party (最短路+转置)

    有n个农场,编号1~N,农场里奶牛将去X号农场.这N个农场之间有M条单向路(注意),通过第i条路将需要花费Ti单位时间.选择最短时间的最优路径来回一趟,花费在去的路上和返回农场的这些最优路径的最长时间 ...

随机推荐

  1. paip.2013年技术趋势以及热点 v3.0 cao

    paip.2013年技术趋势以及热点 v3.0 cao 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.cs ...

  2. 雅虎Yahoo 前段优化 14条军规

    Yahoo 14条 雅虎十四条 腾讯前端设计的Leader推荐我背熟的.请大家都能好好学习,不要像我一样一扫而过,好好的记下来!不仅仅是晓得一些CSS xhtml就好了,深刻认识到很多的东西需要学习的 ...

  3. VS 2008 创建MFC程序对话框的步骤

    用过不少编程语言,可是刚开始学的时候最容易忘记一些简单的流程或者生疏了.那么这里就说说VS 2008 创建MFC程序对话框的步骤.我主要是android开发方面的.平时使用jni调用不少c++代码.所 ...

  4. Django博客功能实现

    开发环境:Python3.5.2和Django1.10.2 username: rootemail: 2016968116@qq.compassword: 123456liuqiuchen 现在我们进 ...

  5. 在主方法中定义一个大小为50的一维整型数组,数组i名为x,数组中存放着{1,3,5,…,99}输出这个数组中的所有元素,每输出十个换一行

    package hanqi; import java.util.Scanner; public class Test7 { public static void main(String[] args) ...

  6. c#之第四课

    数组: , , , , , , -, -, }; foreach (int i in numbers) { System.Console.WriteLine(i); }

  7. Redis优化总结

    # 注意在redis.conf中的小聚合数据类型的特殊编码设置(http://carlosfu.iteye.com/blog/2254572)```hash-max-zipmap-entries 64 ...

  8. 文档大师 搜狗拼音无法输入汉字_乱码的解决方法_VB6程序

    文档大师用 搜狗拼音无法输入汉字,显示的内容和输入的内容不一致.解决方法: 把中文输入里面的那个“美式键盘”再删掉就好用了,只保留搜狗输入法即可!

  9. 前沿技术解密——VirtualDOM

    作为React的核心技术之一Virtual DOM,一直披着神秘的面纱. 实际上,Virtual DOM包含: Javascript DOM模型树(VTree),类似文档节点树(DOM) DOM模型树 ...

  10. Visual Studio 2013 prerequisites

    http://www.visualstudio.com/zh-cn/products/visual-studio-ultimate-with-msdn-vs#Fragment_SystemRequir ...