【转】[caffe]深度学习之图像分类模型AlexNet解读


版权声明:本文为博主原创文章,未经博主允许不得转载。
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之后)。
在DL开源实现caffe的model样例中,它也给出了alexnet的复现,具体网络配置文件如下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt:
接下来本文将一步步对该网络配置结构中各个层进行详细的解读(训练阶段):
1. conv1阶段DFD(data flow diagram):
2. conv2阶段DFD(data flow diagram):
3. conv3阶段DFD(data flow diagram):
4. conv4阶段DFD(data flow diagram):
5. conv5阶段DFD(data flow diagram):
6. fc6阶段DFD(data flow diagram):
7. fc7阶段DFD(data flow diagram):
8. fc8阶段DFD(data flow diagram):
各种layer的operation更多解释可以参考http://caffe.berkeleyvision.org/tutorial/layers.html
从计算该模型的数据流过程中,该模型参数大概5kw+。
caffe的输出中也有包含这块的内容日志,详情如下:
- I0721 10:38:15.326920 4692 net.cpp:125] Top shape: 256 3 227 227 (39574272)
- I0721 10:38:15.326971 4692 net.cpp:125] Top shape: 256 1 1 1 (256)
- I0721 10:38:15.326982 4692 net.cpp:156] data does not need backward computation.
- I0721 10:38:15.327003 4692 net.cpp:74] Creating Layer conv1
- I0721 10:38:15.327011 4692 net.cpp:84] conv1 <- data
- I0721 10:38:15.327033 4692 net.cpp:110] conv1 -> conv1
- I0721 10:38:16.721956 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
- I0721 10:38:16.722030 4692 net.cpp:151] conv1 needs backward computation.
- I0721 10:38:16.722059 4692 net.cpp:74] Creating Layer relu1
- I0721 10:38:16.722070 4692 net.cpp:84] relu1 <- conv1
- I0721 10:38:16.722082 4692 net.cpp:98] relu1 -> conv1 (in-place)
- I0721 10:38:16.722096 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
- I0721 10:38:16.722105 4692 net.cpp:151] relu1 needs backward computation.
- I0721 10:38:16.722116 4692 net.cpp:74] Creating Layer pool1
- I0721 10:38:16.722125 4692 net.cpp:84] pool1 <- conv1
- I0721 10:38:16.722133 4692 net.cpp:110] pool1 -> pool1
- I0721 10:38:16.722167 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
- I0721 10:38:16.722187 4692 net.cpp:151] pool1 needs backward computation.
- I0721 10:38:16.722205 4692 net.cpp:74] Creating Layer norm1
- I0721 10:38:16.722221 4692 net.cpp:84] norm1 <- pool1
- I0721 10:38:16.722234 4692 net.cpp:110] norm1 -> norm1
- I0721 10:38:16.722251 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
- I0721 10:38:16.722260 4692 net.cpp:151] norm1 needs backward computation.
- I0721 10:38:16.722272 4692 net.cpp:74] Creating Layer conv2
- I0721 10:38:16.722280 4692 net.cpp:84] conv2 <- norm1
- I0721 10:38:16.722290 4692 net.cpp:110] conv2 -> conv2
- I0721 10:38:16.725225 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
- I0721 10:38:16.725242 4692 net.cpp:151] conv2 needs backward computation.
- I0721 10:38:16.725253 4692 net.cpp:74] Creating Layer relu2
- I0721 10:38:16.725261 4692 net.cpp:84] relu2 <- conv2
- I0721 10:38:16.725270 4692 net.cpp:98] relu2 -> conv2 (in-place)
- I0721 10:38:16.725280 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
- I0721 10:38:16.725288 4692 net.cpp:151] relu2 needs backward computation.
- I0721 10:38:16.725298 4692 net.cpp:74] Creating Layer pool2
- I0721 10:38:16.725307 4692 net.cpp:84] pool2 <- conv2
- I0721 10:38:16.725317 4692 net.cpp:110] pool2 -> pool2
- I0721 10:38:16.725329 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
- I0721 10:38:16.725338 4692 net.cpp:151] pool2 needs backward computation.
- I0721 10:38:16.725358 4692 net.cpp:74] Creating Layer norm2
- I0721 10:38:16.725368 4692 net.cpp:84] norm2 <- pool2
- I0721 10:38:16.725378 4692 net.cpp:110] norm2 -> norm2
- I0721 10:38:16.725389 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
- I0721 10:38:16.725399 4692 net.cpp:151] norm2 needs backward computation.
- I0721 10:38:16.725409 4692 net.cpp:74] Creating Layer conv3
- I0721 10:38:16.725419 4692 net.cpp:84] conv3 <- norm2
- I0721 10:38:16.725427 4692 net.cpp:110] conv3 -> conv3
- I0721 10:38:16.735193 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
- I0721 10:38:16.735213 4692 net.cpp:151] conv3 needs backward computation.
- I0721 10:38:16.735224 4692 net.cpp:74] Creating Layer relu3
- I0721 10:38:16.735234 4692 net.cpp:84] relu3 <- conv3
- I0721 10:38:16.735242 4692 net.cpp:98] relu3 -> conv3 (in-place)
- I0721 10:38:16.735250 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
- I0721 10:38:16.735258 4692 net.cpp:151] relu3 needs backward computation.
- I0721 10:38:16.735302 4692 net.cpp:74] Creating Layer conv4
- I0721 10:38:16.735312 4692 net.cpp:84] conv4 <- conv3
- I0721 10:38:16.735321 4692 net.cpp:110] conv4 -> conv4
- I0721 10:38:16.743952 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
- I0721 10:38:16.743988 4692 net.cpp:151] conv4 needs backward computation.
- I0721 10:38:16.744000 4692 net.cpp:74] Creating Layer relu4
- I0721 10:38:16.744010 4692 net.cpp:84] relu4 <- conv4
- I0721 10:38:16.744020 4692 net.cpp:98] relu4 -> conv4 (in-place)
- I0721 10:38:16.744030 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
- I0721 10:38:16.744038 4692 net.cpp:151] relu4 needs backward computation.
- I0721 10:38:16.744050 4692 net.cpp:74] Creating Layer conv5
- I0721 10:38:16.744057 4692 net.cpp:84] conv5 <- conv4
- I0721 10:38:16.744067 4692 net.cpp:110] conv5 -> conv5
- I0721 10:38:16.748935 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
- I0721 10:38:16.748955 4692 net.cpp:151] conv5 needs backward computation.
- I0721 10:38:16.748965 4692 net.cpp:74] Creating Layer relu5
- I0721 10:38:16.748975 4692 net.cpp:84] relu5 <- conv5
- I0721 10:38:16.748983 4692 net.cpp:98] relu5 -> conv5 (in-place)
- I0721 10:38:16.748998 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
- I0721 10:38:16.749011 4692 net.cpp:151] relu5 needs backward computation.
- I0721 10:38:16.749022 4692 net.cpp:74] Creating Layer pool5
- I0721 10:38:16.749030 4692 net.cpp:84] pool5 <- conv5
- I0721 10:38:16.749039 4692 net.cpp:110] pool5 -> pool5
- I0721 10:38:16.749050 4692 net.cpp:125] Top shape: 256 256 6 6 (2359296)
- I0721 10:38:16.749058 4692 net.cpp:151] pool5 needs backward computation.
- I0721 10:38:16.749074 4692 net.cpp:74] Creating Layer fc6
- I0721 10:38:16.749083 4692 net.cpp:84] fc6 <- pool5
- I0721 10:38:16.749091 4692 net.cpp:110] fc6 -> fc6
- I0721 10:38:17.160079 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.160148 4692 net.cpp:151] fc6 needs backward computation.
- I0721 10:38:17.160166 4692 net.cpp:74] Creating Layer relu6
- I0721 10:38:17.160177 4692 net.cpp:84] relu6 <- fc6
- I0721 10:38:17.160190 4692 net.cpp:98] relu6 -> fc6 (in-place)
- I0721 10:38:17.160202 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.160212 4692 net.cpp:151] relu6 needs backward computation.
- I0721 10:38:17.160222 4692 net.cpp:74] Creating Layer drop6
- I0721 10:38:17.160230 4692 net.cpp:84] drop6 <- fc6
- I0721 10:38:17.160238 4692 net.cpp:98] drop6 -> fc6 (in-place)
- I0721 10:38:17.160258 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.160265 4692 net.cpp:151] drop6 needs backward computation.
- I0721 10:38:17.160277 4692 net.cpp:74] Creating Layer fc7
- I0721 10:38:17.160286 4692 net.cpp:84] fc7 <- fc6
- I0721 10:38:17.160295 4692 net.cpp:110] fc7 -> fc7
- I0721 10:38:17.342094 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.342157 4692 net.cpp:151] fc7 needs backward computation.
- I0721 10:38:17.342175 4692 net.cpp:74] Creating Layer relu7
- I0721 10:38:17.342185 4692 net.cpp:84] relu7 <- fc7
- I0721 10:38:17.342198 4692 net.cpp:98] relu7 -> fc7 (in-place)
- I0721 10:38:17.342208 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.342217 4692 net.cpp:151] relu7 needs backward computation.
- I0721 10:38:17.342228 4692 net.cpp:74] Creating Layer drop7
- I0721 10:38:17.342236 4692 net.cpp:84] drop7 <- fc7
- I0721 10:38:17.342245 4692 net.cpp:98] drop7 -> fc7 (in-place)
- I0721 10:38:17.342254 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
- I0721 10:38:17.342262 4692 net.cpp:151] drop7 needs backward computation.
- I0721 10:38:17.342274 4692 net.cpp:74] Creating Layer fc8
- I0721 10:38:17.342283 4692 net.cpp:84] fc8 <- fc7
- I0721 10:38:17.342291 4692 net.cpp:110] fc8 -> fc8
- I0721 10:38:17.343199 4692 net.cpp:125] Top shape: 256 22 1 1 (5632)
- I0721 10:38:17.343214 4692 net.cpp:151] fc8 needs backward computation.
- I0721 10:38:17.343231 4692 net.cpp:74] Creating Layer loss
- I0721 10:38:17.343240 4692 net.cpp:84] loss <- fc8
- I0721 10:38:17.343250 4692 net.cpp:84] loss <- label
- I0721 10:38:17.343264 4692 net.cpp:151] loss needs backward computation.
- I0721 10:38:17.343305 4692 net.cpp:173] Collecting Learning Rate and Weight Decay.
- I0721 10:38:17.343327 4692 net.cpp:166] Network initialization done.
- I0721 10:38:17.343335 4692 net.cpp:167] Memory required for Data 1073760256
【转】[caffe]深度学习之图像分类模型AlexNet解读的更多相关文章
- [caffe]深度学习之图像分类模型AlexNet解读
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN ...
- [caffe]深度学习之图像分类模型VGG解读
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet ...
- Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 blink 15年1月 Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architec ...
- [转]Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281 blink 15年1月 6 Caffe448是一个清 ...
- supervessel-免费云镜像︱GPU加速的Caffe深度学习开发环境
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即 ...
- 深度学习的seq2seq模型——本质是LSTM,训练过程是使得所有样本的p(y1,...,yT‘|x1,...,xT)概率之和最大
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(En ...
- 深度学习 vs. 概率图模型 vs. 逻辑学
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器 ...
- 时间序列深度学习:seq2seq 模型预测太阳黑子
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处 ...
- Ubuntu 14.04 安装caffe深度学习框架
简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...
随机推荐
- 双节点(nginx+keepalived)为两台apache服务器提供负载均衡
说明:本实验为双节点nginx为两台apache服务器提供负载均衡,本文不是做lvs,所以realserver不是配置在keepalived.conf而是在nginx的配置文件中upstream.此架 ...
- Android学习笔记(五)
Intent不仅用来启动一个活动,Intent还可以在启动活动的时候传递参数. 1.向下一个活动传递数据 启动活动的时候传递数据,Intent提供了一系列putExtra()方法的重载,可以把要传递的 ...
- 怎样避免 i f 判断过多,全复杂度较高,代码不美观的问题?
没有什么好的设计方式可以实现,减少一个方法中出现几十个 if 匹配的判断? 现在要做一个判断客户是否通过验证的接口. 一共有30多个验证规则的判断, 每个规则对应一个规则号: 这个接口只需要返回是否验 ...
- c# 高效率导出多维表头excel
[DllImport("User32.dll", CharSet = CharSet.Auto)] public static extern int GetWindowThread ...
- Graph单元
感谢世外苏子恒同学提供 一.调用单元 例:uses graph; 二.初始化 例:initgraph(var graphdriver,graphmode:integer; const path ...
- jsp动作标签概述
*Jsp动作标签概述: >动作标签的作用是用来简化java脚本 >jsp动作标签是JavaWeb内置的动作标签,它们是已经定义好的动作标签,我们可以拿来直接使用. >JavaWeb一 ...
- 5,SFDC 管理员篇 - 数据模型 - 数据关联
1,PickList 1,填写基本信息 2, 选择能角色的权限 3,在哪一个层上显示(object 上有多个 Record Type 对应多个层,需要选择在哪一个层显示) 4,Save 2,两个P ...
- Linux 命令 ls -l
一.ll命令 ll并不是linux下一个基本的命令,它实际上是ls -l的一个别名. Ubuntu默认不支持命令ll,必须用 ls -l,这样使用起来不是很方便. 如果要使用此命令,可以作如下修改:打 ...
- Swift中的Optional类型 (可选类型)与强制解包 ? !
我们在swift的开发中会经常遇见?和! ,理解这两个符号深层次的内容对我们的开发是相当有利的: 目前网上对swift3.0的教程还相当的少,如果去搜索会发现早期的说法,在定义变量的时候,swift是 ...
- 【转】git push 出现401 错误
错误信息:error: The requested URL returned error: 401 Unauthorized while accessing https://git.oschina.n ...