什么是超级立方体,HyperCube
我试试用我的方式说说如何构造n维空间吧。
n维空间在n大于3后,说要画出来,有点难以想象。
但从数学的角度看,高维空间这个概念还算比较普通、容易理解的。
与其解释,不如快快开始。我选择用图(Graph)的方法来描述想说的东西,而且,我选的是特殊的某类空间,并且不是大多数人通常理解的空间。我选的空间的各个维度上只有一个比特——值只能在0和1之间取。数学符号表示是
下面会看到,这个模型会让人想到信息论里格雷码。但那是另一码事;我事实上忘了这种图论模型的名字,只是知道它而已。这里选择它,只是因为它的空间非常简单,我觉得应会比较容易感受维度的扩张如何进行。
首先希望大家放下对维度的先入之见。此处的维度,仅是@Ent 所说的自由度,并非大家通常理解的坐标轴的延伸方向。
开始吧。
首先是,
零维空间,没有维度——也即连一个可以取0-1值的比特都容不下。
但给它扩张一个维度后,
就有点意思了。原先的一个点获得了一个方向分成了两头。此时图示对应的空间可以容纳一个取0-1值的比特,这个空间即成为一维的空间。
再扩张,
这是空间可以容纳两个比特了,也即可以表示种状态。在该图里,开始可以看到维度是如何扩充的了:图的底下那条边,正是前一张图;将该条单边做一份拷贝,然后将原图和拷贝的两个顶点连接起来,就得到了这张图。
再按上述的方式扩张一次,
此时,该图拥有了个顶点,可表示的状态也增长到这个数目;它所对应的空间扩张成了三维的,能容纳三个在0和1之间取值的比特。这里有个比较有趣的现象:
许多人倾向将这个图看作是立方体,哪怕他只是一个图(Graph)。
再来,应该是四维空间。大家可能都见过很多次的四维空间的标志物:
即这个问题的首页图:超立方体(Hypercube)。
事实上确实会得到超立方体,
(解释一下,首页图片上的这个图形也是两个立方体的八个顶点互相连接,只不过下面这个图是两个大小相同的立方体,而上面那个看起来一大一小)
如果你眼力比较好,可以看出这个图跟本问题的首页图是等价——妥妥的同一回事。该有的点都有,点和点之间该有的边都有,不该有的边都没有。这次的扩张,和前面的操作完全一样:
先取上一张图的原份,做一份拷贝;再将拷贝和原份的对应点连接起来,得到下一张图。
新图对应的空间,再次多了一个比特;同时能表示的状态翻了一倍。
上面各个过程,进行的操作是一样的:对空间的扩基(Extending basis),将n-1维空间升级为n维空间。由数学归纳法,事实上我们可以得到任意维的空间。只是,我取的空间是特殊的。
但也不要认为这样的空间离欧氏空间很远——这种由比特组成的空间 (我忘了它的正式称谓) 的坐标值只能在两个离散值间取;假若各个坐标的取值都能取实数,那它就是欧氏空间
就介样,以后别说「画不出n维空间」这样的话了
什么是超级立方体,HyperCube的更多相关文章
- H - Hamiltonian Hypercube Gym - 101170H
规律题 首先我们要知道他的顺序是怎么来的,首先当n等于1时,是0,1 当n=2时,先按照与按顺序在他们前面分别加0,即00,01,在逆序加1,即11,10 构成的顺序为00,01,11,10:往后同理 ...
- 2016-2017 ACM-ICPC Northwestern European Regional Programming Contest (NWERC 2016)
A. Arranging Hat $f[i][j]$表示保证前$i$个数字有序,修改了$j$次时第$i$个数字的最小值. 时间复杂度$O(n^3m)$. #include <bits/stdc+ ...
- Scikit-Learn模块学习笔记——数据集模块datasets
scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fe ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- Curse of Dimensionality
Curse of Dimensionality Curse of Dimensionality refers to non-intuitive properties of data observed ...
- 海明距离hamming distance
仔细阅读ORB的代码,发现有很多细节不是很明白,其中就有用暴力方式测试Keypoints的距离,用的是HammingLUT,上网查了才知道,hamming距离是相差位数.这样就好理解了. 我理解的Ha ...
- UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)
Stacking Boxes Background Some concepts in Mathematics and Computer Science are simple in one or t ...
随机推荐
- 推迟调用以及Lambda表达式
背景 GMock 我们项目中现在的模块测试框架使用了CATCH+GMock的方式实现回归测试和打桩. GMock的介绍在官网上有,这里为了铺垫,大概地描述一下GMock能实现的效果.大约可以看成这样: ...
- Call Paralution Solver from Fortran
Abstract: Paralution is an open source library for sparse iterative methods with special focus on mu ...
- Coursera台大机器学习课程笔记3 – 机器学习的分类和机器学习的可能性
第三讲比较简单,参考:http://www.cnblogs.com/HappyAngel/p/3466527.html 第四讲很抽象,尤其是第四个视频,目的仍然是为了证明机器学习是可能的,不过这个博主 ...
- Kruskal vs Borůvka
做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...
- PHP中通过加号合并数组
通常,我们合并多个数组用的是array_merge()函数,其实,PHP手册中关于数组操作符的介绍给了我们更简单的方法,那就是"+"号,看看下面的例子就明白了(详细了解) 代码: ...
- Segment Tree Build I & II
Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...
- Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- 【leetcode】Interleaving String
Interleaving String Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. Fo ...
- [Android Pro] 横竖屏切换时,禁止activity重新创建,android:configChanges="keyboardHidden|orientation" 不起作用
referece to : http://blog.csdn.net/mybook1122/article/details/24978025 这个网上搜索,很多结果都是: AndroidManifes ...
- (九)STM32之AFIO
也许你以为IO和AFIO是很简单的,事实上有几个误区可能很多人都没注意过,当你只用现成的开发板来学习的时候,别人已经帮你做好了资源分配,所有的外设功能学习都是照着别人给你的例程去做的,这才没让你觉得奇 ...