一、强分类器训练过程

算法原理如下(参考自VIOLA P, JONES M. Robust real time object detection[A] . 8th IEEE International Conference on Computer Vision[C] . Vancouver , 2001.)

  • 给定样本 (x1; y1) , . . . , (xn; yn) ; 其中yi = 0表示负样本,yi =1表示正样本;
  • 初始化权重:负样本权重W0i= 1/2m, 正样本权重W1i = 1/ 2l,其中m为负样本总数,l为正样本总数;
  • 对于t = 1, ... T(T为训练次数):
    1. 权重归一化,简单说就是使本轮所有样本的权重的和为1;
    2. 根据每一个特征训练简单分类器,仅使用一个特征;
    3. 从所有简单分类器中选出一个分错率最低的分类器,为弱分类器;
    4. 更新权重
  • 最后组合T个弱分类器为强分类器

二、代码实现及说明(python)

目的:训练得到一个强分类器,该强分类器分错率低于预设值,且该强分类器由若干个弱分类器(对应单个特征)组成,通过若干个分类器及其权重计算得到的值对样本进行分类。

def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = [] #存放强分类器的所有弱分类器信息
m = shape(dataArr)[0]
D = mat(ones((m,1))/m) #权重初始化
aggClassEst = mat(zeros((m,1)))
for i in range(numIt):
bestStump,error,classEst = buildStump(dataArr,classLabels,D)#根据训练样本、权重得到一个弱分类器 print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#计算alpha值,该值与分错率相关,分错率越小,该值越大,弱分类器权重
#max(error,1e-16)用于确保错误为0时不会发生除0溢出
bestStump['alpha'] = alpha
weakClassArr.append(bestStump) #存储该弱分类
print "classEst: ",classEst.T
expon = multiply(-1*alpha*mat(classLabels).T,classEst)
D = multiply(D,exp(expon)) #重新计算样本权重
D = D/D.sum() #归一化
#计算当前强分类器的分错率,达到预期要求即停止
aggClassEst += alpha*classEst
print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1))) #计算数据点哪个是错误
print 'aggErrors: ',sign(aggClassEst) != mat(classLabels).T
print 'aggErrors: ',aggErrors
errorRate = aggErrors.sum()/m #计算错误率
print "total error: ",errorRate
if errorRate == 0.0: break
return weakClassArr

三、运行结果

训练样本:

datMat = matrix([[ 1. ,  2.1,  0.3],
                                 [ 2. ,  1.1,  0.4],
                                 [ 1.3,  1. ,  1.2],
                                 [ 1. ,  1. ,  1.1],
                                 [ 2. ,  1. ,  1.3],
                                 [ 7. ,  2. ,  0.35]])
    classLabels = [1.0, 1.0, 1.0, -1.0, -1.0, -1.0]

训练得到的强分类器(强分类器分错率:0%,单个弱分类器最小分错率为33%,在上一篇已经测试过):

[{'dim': 0, 'ineq': 'gt', 'thresh': 1.6000000000000001, 'alpha': 0.34657359027997275},

{'dim': 1, 'ineq': 'lt', 'thresh': 1.0, 'alpha': 0.5493061443340549},

{'dim': 0, 'ineq': 'gt', 'thresh': 2.2000000000000002, 'alpha': 0.5493061443340549},

{'dim': 2, 'ineq': 'gt', 'thresh': 0.29999999999999999, 'alpha': 0.4777557225137181},

{'dim': 0, 'ineq': 'lt', 'thresh': 1.0, 'alpha': 0.49926441505556346}]

手动计算分类:

针对第一个样本[ 1. ,  2.1, 
0.3],利用强分类器计算结果如下:
- 0.34657359027997275

- 0.5493061443340549

-
0.5493061443340549

+
0.4777557225137181

+
0.49926441505556346

= -0.468165741378801--->小于0,正样本

针对第六个样本[
7. ,  2. ,  0.35],利用强分类器计算结果如下:
+ 0.34657359027997275

- 0.5493061443340549

+
0.5493061443340549

+
0.4777557225137181

-
0.49926441505556346

= +0.3250648977381274--->大于0,负样本

其它样本的计算类似

结论:

强分类器分类,即通过若干个分类器的权重的正负号计算得出,而正负号是通过该若分类器的阈值判断得到;

强分类器比弱分类器准确率高。

【AdaBoost算法】强分类器训练过程的更多相关文章

  1. 【AdaBoost算法】弱分类器训练过程

    一.加载数据(正样本.负样本特征) def loadSimpData(): #样本特征 datMat = matrix([[ 1. , 2.1, 0.3], [ 2. , 1.1, 0.4], [ 1 ...

  2. SIGAI机器学习第二十一集 AdaBoost算法2

    讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. 大纲: ...

  3. adaboost算法

    三 Adaboost 算法 AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器.(很多博客里说的三个臭皮匠 ...

  4. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

  5. 使用 AdaBoost 元算法提高分类器性能

    前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...

  6. 第九篇:使用 AdaBoost 元算法提高分类器性能

    前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...

  7. 机器学习——提升方法AdaBoost算法,推导过程

    0提升的基本方法 对于分类的问题,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确的分类的分类规则(强分类器)容易的多.提升的方法就是从弱分类器算法出发,反复学习,得到一系列弱分类器(又 ...

  8. 基于AdaBoost算法——世纪晟结合Haar-like特征训练人脸检测识别

      AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haa ...

  9. 【Adaboost算法】C++转C, 分类器结构设计

    一.参考OpenCV的CascadeClassifier类LBPEvaluator类 如下,筛选出存放分类器相关信息的成员变量: class CV_EXPORTS_W CascadeClassifie ...

随机推荐

  1. 使用 IntelliJ IDEA 2016和Maven创建Java Web项目的详细步骤及相关问题解决办法

    Maven简介 相对于传统的项目,Maven 下管理和构建的项目真的非常好用和简单,所以这里也强调下,尽量使用此类工具进行项目构建, 它可以管理项目的整个生命周期. 可以通过其命令做所有相关的工作,其 ...

  2. [git]解决rebase冲突

    git pull --rebase时产生冲突 有三个选项: git rebase --skip 效果是:抛弃本地的commit,采用远程的commit(慎用因为你本地的修改就会都没有!) git re ...

  3. Eclipse魔法堂:任务管理器

    一.前言        Eclipse的任务管理器为我们提供一个方便的入口查看工程代办事宜,并定位到对应的代码行继续之前的工作. 二.使用示例        示例1: /** * @Descripti ...

  4. CSS3的变形transform、过渡transition、动画animation学习

    学习CSS3动画animation得先了解一些关于变形transform.过渡transition的知识 这些新属性大多在新版浏览器得到了支持,有些需要添加浏览器前缀(-webkit-.-moz-.- ...

  5. Oracle Fusion Applications (11.1.8) Media Pack and Oracle Application Development Framework 11g (11.1.1.7.2) for Microsoft Windows x64 (64-bit)

    Oracle Fusion Applications (11.1.8) Media Pack for Microsoft Windows x64 (64-bit) 重新搜索   常见问题    提示  ...

  6. EasyUI组合树插件

    一.引用CSS和JS <link href="~js/easyui/easyui.css" rel="stylesheet" type="tex ...

  7. mysql数据库入门

    在很多地方都有人提到MySQL这个数据,之前没有接触过的mysql数据库的童鞋们可以跟我一起走进mysql的世界. http://hovertree.com/menu/mysql/ 安装我就不多说了, ...

  8. WebApi传参总动员(填坑)

    本以为系列文章已经Over,突然记起来前面留了个大坑还没填,真是自己给自己挖坑. 这个坑就是: (body 只能被读取一次)Only one thing can read the body MVC和W ...

  9. 分享AceAdminUI后台框架-你喜欢吗?

    距离上次写文章也很久了,这次分享一下自己刚刚看上的一款UI框架(自己买的),国外货,提供下载 第100位评论的我将会送出一个小礼物 礼物链接:http://yanghenglian.taobao.co ...

  10. 常见的几种RuntimeException

    一般面试中java Exception(runtimeException )是必会被问到的问题 常见的异常列出四五种,是基本要求.更多的....需要注意积累了   常见的几种如下:   NullPoi ...