221. Maximal Square
题目:
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
链接: http://leetcode.com/problems/maximal-square/
题解:
二维DP,先初始化首行和首列,然后假设matrix[i][j] == '1',我们可以先设定dp[i][j] = 1,然后根据左上,上,左三个元素中最小的一个来求新的值。代码写得较繁琐,还可以优化空间复杂度。
Time Complexity - O(n2), Space Complexity - O(n2)
public class Solution {
public int maximalSquare(char[][] matrix) {
if(matrix == null || matrix.length == 0)
return 0;
int[][] dp = new int[matrix.length][matrix[0].length];
int max = 0;
for(int i = 0; i < matrix.length; i++) {
if(matrix[i][0] == '1') {
dp[i][0] = 1;
if(max == 0)
max = 1;
}
}
for(int j = 0; j < matrix[0].length; j++) {
if(matrix[0][j] == '1') {
dp[0][j] = 1;
if(max == 0)
max = 1;
}
}
for(int i = 1; i < dp.length; i++) {
for(int j = 1; j < dp[0].length; j++) {
if(matrix[i][j] == '1') {
dp[i][j] = 1;
if(dp[i - 1][j - 1] > 0
&& dp[i - 1][j] > 0
&& dp[i][j - 1] > 0) {
int prev = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
prev = (int)Math.sqrt(prev) + 1;
prev *= prev;
dp[i][j] = prev;
max = Math.max(max, prev);
}
}
}
}
return max;
}
}
二刷:
使用了与一刷相同的方法, 二维dp。先初始化dp矩阵行和列,再根据当前点上边,左边,左上边的三个点来决定是否是一个全一square,假如是一个全一square,那么我们还要根据这三个点里的最小值来求出当前点的值,要先开方,加1再平方。代码繁琐,速度也比较慢,说明功力还不足。这里dp[i][j]是全一正方形的元素数,这个设置并不好。
Java:
2D - DP
Time Complexity - O(mn), Space Complexity - O(mn)
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length;
int colNum = matrix[0].length;
int[][] dp = new int[rowNum][colNum];
int max = 0;
for (int i = 0; i < rowNum; i++) {
if (matrix[i][0] == '1') {
dp[i][0] = 1;
max = 1;
}
}
for (int j = 0; j < colNum; j++) {
if (matrix[0][j] == '1') {
dp[0][j] = 1;
max = 1;
}
}
for (int i = 1; i < rowNum; i++) {
for (int j = 1; j < colNum.length; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = 1;
if (dp[i - 1][j - 1] > 0 && dp[i - 1][j] > 0 && dp[i][j - 1] > 0) {
int prev = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
prev = (int)Math.sqrt(prev) + 1;
dp[i][j] = prev * prev;
}
max = Math.max(dp[i][j], max);
}
}
}
return max;
}
}
二维dp改进,我们改变dp[i][j]的设置,下面dp[i][j]代表以(i, j)为右下角的全一矩阵的最长边长,这样我们就可以避免每次计算sqrt以及作乘法, 只要最后返回maxLen * maxLen就可以了。速度从18%上升到了58%。
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length;
int colNum = matrix[0].length;
int[][] dp = new int[rowNum][colNum];
int maxLen = 0;
for (int i = 0; i < rowNum; i++) {
if (matrix[i][0] == '1') {
dp[i][0] = 1;
maxLen = 1;
}
}
for (int j = 0; j < colNum; j++) {
if (matrix[0][j] == '1') {
dp[0][j] = 1;
maxLen = 1;
}
}
for (int i = 1; i < rowNum; i++) {
for (int j = 1; j < colNum; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = 1;
if (dp[i - 1][j - 1] > 0 && dp[i - 1][j] > 0 && dp[i][j - 1] > 0) {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
maxLen = Math.max(dp[i][j], maxLen);
}
}
}
return maxLen * maxLen;
}
}
一维DP:
这里因为dp[i][j]的值只和dp[i - 1][j - 1], dp[i - 1][j]以及dp[i][j - 1]相关,所以我们可以使用滚动数组来进行空间复杂度的优化,一行一行进行计算。思路大都借鉴了jianchao.li.figher大神的。我们先遍历首行和首列查找元素'1',假如有'1'则max可以设置为1。接下来使用了一个临时变量topLeft来保存topLeft元素,在matrix[i][j] == '1'的情况下,在滚动数组里我们仍然考虑左边元素 - dp[j - 1], 上方元素dp[j]以及左上元素topLeft。 我们预先保存dp[j]作为下一次计算的topLeft。 最后返回 maxLen * maxLen。
还要继续精炼代码。看过dietpepsi乐神的代码以后发现真是简短而且优美。
Time Complexity - O(mn), Space Complexity - O(n)
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length;
int colNum = matrix[0].length;
int[] dp = new int[colNum];
int maxLen = 0;
for (int j = 0; j < colNum; j++) {
if (matrix[0][j] == '1') {
dp[j] = 1;
maxLen = 1;
}
}
if (maxLen == 0) {
for (int i = 0; i < rowNum; i++) {
if (matrix[i][0] == '1') {
maxLen = 1;
break;
}
}
}
int topLeft = 0;
for (int i = 1; i < rowNum; i++) {
for (int j = 1; j < colNum; j++) {
if (j == 1) {
topLeft = matrix[i - 1][j - 1] - '0';
dp[j - 1] = matrix[i][j - 1] - '0';
}
int tmp = dp[j];
if (matrix[i][j] == '1') {
if (dp[j] > 0 && dp[j - 1] > 0 && topLeft > 0) {
dp[j] = Math.min(dp[j - 1], Math.min(dp[j], topLeft)) + 1;
} else {
dp[j] = 1;
}
maxLen = Math.max(dp[j], maxLen);
} else {
dp[j] = 0;
}
topLeft = tmp;
}
}
return maxLen * maxLen;
}
}
一维DP的优化:
- 扩大初始化dp数组的size到colNum + 1,这样我们就不需要对首行和首列进行额外地判断。只需要在每次j = 1的时候设置dp[j - 1] = 0,以及topLeft = 0就可以了。代码还是不太好看,还可以继续优化代码。
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length;
int colNum = matrix[0].length;
int[] dp = new int[colNum + 1];
int maxLen = 0;
int topLeft = 0;
for (int i = 1; i <= rowNum; i++) {
for (int j = 1; j <= colNum; j++) {
if (j == 1) {
topLeft = 0;
dp[j - 1] = 0;
}
int tmp = dp[j];
if (matrix[i - 1][j - 1] == '1') {
if (dp[j] > 0 && dp[j - 1] > 0 && topLeft > 0) {
dp[j] = Math.min(dp[j - 1], Math.min(dp[j], topLeft)) + 1;
} else {
dp[j] = 1;
}
maxLen = Math.max(maxLen, dp[j]);
} else {
dp[j] = 0;
}
topLeft = tmp;
}
}
return maxLen * maxLen;
}
}
一维DP再优化:
下面又作了一些优化:
- 去除了 j == 1的判断,因为上面扩大了一维dp数组的size,所以dp[0]总是等于0
- 把topLeft的定义放在了外循环, 我们在处理每行之前,设置int topLeft = 0
- 简化了当matrix[i - 1][j - 1] == '1'时的逻辑。我们不需要判断左上,上和左三个点是否大于0, 只需要取三个点的min 再加1就可以了
到这里已经比较接近discuss里jianchao.li.fighter的版本了。 我们还可以把i 从 0 ~ rowNum进行遍历,这样就少作一个 i - 1的计算。那就基本和jianchao.li.fighter的解一样了。
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length, colNum = matrix[0].length;
int[] dp = new int[colNum + 1];
int maxLen = 0;
for (int i = 1; i <= rowNum; i++) {
int topLeft = 0;
for (int j = 1; j <= colNum; j++) {
int tmp = dp[j];
if (matrix[i - 1][j - 1] == '1') {
dp[j] = Math.min(dp[j - 1], Math.min(dp[j], topLeft)) + 1;
maxLen = Math.max(maxLen, dp[j]);
} else {
dp[j] = 0;
}
topLeft = tmp;
}
}
return maxLen * maxLen;
}
}
二维DP再优化
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rowNum = matrix.length, colNum = matrix[0].length;
int[][] dp = new int[rowNum + 1][colNum + 1];
int maxLen = 0;
for (int i = 1; i <= rowNum; i++) {
for (int j = 1; j <= colNum; j++) {
if (matrix[i - 1][j - 1] == '1') {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
maxLen = Math.max(maxLen, dp[i][j]);
}
}
}
return maxLen * maxLen;
}
}
三刷:
Java:
二维dp
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) return 0;
int rowNum = matrix.length, colNum = matrix[0].length;
int[][] dp = new int[rowNum + 1][colNum + 1];
int minLen = 0;
for (int i = 1; i <= rowNum; i++) {
for (int j = 1; j <= colNum; j++) {
if (matrix[i - 1][j - 1] == '1') {
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
minLen = Math.max(minLen, dp[i][j]);
}
}
}
return minLen * minLen;
}
}
简化为一维dp:
主要还是使用了topLeft来代表左上角的值。要注意先用tmp保存当前dp[j],结束完这个位置的计算时更新topLeft。在每一行开始前充值topLeft = 0。还有就是matrix[i - 1][j - 1] = '0'的情况下我们要设置dp[j] = 0
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) return 0;
int rowNum = matrix.length, colNum = matrix[0].length;
int[] dp = new int[colNum + 1];
int minLen = 0;
for (int i = 1; i <= rowNum; i++) {
int topLeft = 0;
for (int j = 1; j <= colNum; j++) {
int tmp = dp[j];
if (matrix[i - 1][j - 1] == '1') {
dp[j] = 1 + Math.min(topLeft, Math.min(dp[j], dp[j - 1]));
minLen = Math.max(minLen, dp[j]);
} else {
dp[j] = 0;
}
topLeft = tmp;
}
}
return minLen * minLen;
}
}
Reference:
https://leetcode.com/discuss/63211/java-8ms-python-112-ms-dp-solution-o-mn-time-one-pass
http://www.cnblogs.com/jcliBlogger/p/4548751.html
https://leetcode.com/discuss/38489/easy-solution-with-detailed-explanations-8ms-time-and-space
221. Maximal Square的更多相关文章
- leetcode每日解题思路 221 Maximal Square
问题描述: 题目链接:221 Maximal Square 问题找解决的是给出一个M*N的矩阵, 只有'1', '0',两种元素: 需要你从中找出 由'1'组成的最大正方形.恩, 就是这样. 我们看到 ...
- 求解最大正方形面积 — leetcode 221. Maximal Square
本来也想像园友一样,写一篇总结告别 2015,或者说告别即将过去的羊年,但是过去一年发生的事情,实在是出乎平常人的想象,也不具有代表性,于是计划在今年 6 月份写一篇 "半年总结" ...
- 【LeetCode】221. Maximal Square
Maximal Square Given a 2D binary matrix filled with 0's and 1's, find the largest square containing ...
- 【刷题-LeetCode】221. Maximal Square
Maximal Square Given a 2D binary matrix filled with 0's and 1's, find the largest square containing ...
- [LeetCode] 221. Maximal Square 最大正方形
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- Java for LeetCode 221 Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- 221. Maximal Square -- 矩阵中1组成的最大正方形
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and re ...
- (medium)LeetCode 221.Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- 221. Maximal Square(动态规划)
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and re ...
随机推荐
- windows系统下在dos命令行kill掉被占用的pid
备忘 1.开始-->运行-->cmd 2.命令行输入: netstat -ano I findstr 端口(被占用的端口号) 3.输入: tasklist | findstr 端口(获取步 ...
- 膜拜 2014-2 (献给L之三)
文/安然 深深的夜静静的想你细细的品味满满的甜蜜爱,心灵的对话让我流泪战栗谢谢你给我这么弥足珍贵的体会不能一生相随又有什么关系你一直都在我的爱就永不停息此生足以——献给心底的爱
- CAF(C++ actor framework)(序列化之类,无需序列化,直接传)(二)
昨天讲了Struct,还是不够满意,毕竟C++里面类用的比较多嘛,那就先上个类, 这段代码是我稍微改编了一下的结果.都是最基本的用法. #include <utility> #includ ...
- MFC中快速应用OpenCV(转)
转载链接:http://wiki.opencv.org.cn/index.php/MFC%E4%B8%AD%E5%BF%AB%E9%80%9F%E5%BA%94%E7%94%A8OpenCV 简介和缘 ...
- 《APUE》第6章练习1
问题:编写一个程序,它调用uname并输出utsname结构中的所有字段,并将输出与uname(1)命令的输出结构做比较. 我本来以为utsname结构也跟passwd结构一样,也有那三个函数来获取整 ...
- DTCMS自定义标签:面包屑导航,栏目中通过栏目调用名称获得栏目名称
DTcms.Web.UI\Label\category.cs中增加标签 /// <summary> /// 自定义:通过类别name获得类别title /// </summary&g ...
- 解决ionic在ios无法使用focus,ios focus失效的问题
最近也偷懒,很久没有写博客了.今天在项目中遇到了这个奇葩的问题,基于ionic的ios的hybird APP 无法使用focus()获取焦点和键盘的问题. 问题:基于ionic的ios的hybird ...
- Python串行运算、并行运算、多线程、多进程对比实验
转自:http://www.redicecn.com/html/Python/20111223/355.html Python发挥不了多核处理器的性能(据说是受限于GIL,被锁住只能用一个CPU核心, ...
- ARM-Linux S5PV210 UART驱动(5)----串口的open操作(tty_open、uart_open)
串口驱动初始化后,串口作为字符驱动也已经注册到系统了,/dev目录下也有设备文件节点了. 那接下来uart的操作是如何进行的呢? 操作硬件之前都是要先open设备,先来分析下这里的open函数具体做了 ...
- 2014年辛星完全解读Javascript第五节 break和continue与错误处理
先说一下break和continue的主要用法吧,break用于跳出循环,continue用于跳过该循环中的一个迭代.简单的说,就是break直接从该语句跳出,但是continue不会跳出该循环语句, ...