(ACM ICPC 2013–2014, NEERC, Northern Subregional Contest)

Flight Boarding Optimization
Input file: flight.in
Output file: flight.out
Time limit: 2 seconds
Memory limit: 256 megabytes
Peter is an executive boarding manager in Byteland airport. His job is to optimize the boarding process.
The planes in Byteland have s rows, numbered from 1 to s. Every row has six seats, labeled A to F.
There are n passengers, they form a queue and board the plane one by one. If the i-th passenger sits in
a row r i then the difficulty of boarding for him is equal to the number of passengers boarded before him
and sit in rows 1...r i −1. The total difficulty of the boarding is the sum of difficulties for all passengers.
For example, if there are ten passengers, and their seats are 6A, 4B, 2E, 5F, 2A, 3F, 1C, 10E, 8B, 5A,
in the queue order, then the difficulties of their boarding are 0, 0, 0, 2, 0, 2, 0, 7, 7, 5, and the total
difficulty is 23.
To optimize the boarding, Peter wants to divide the plane into k zones. Every zone must be a continuous
range of rows. Than the boarding process is performed in k phases. On every phase, one zone is selected
and passengers whose seats are in this zone are boarding in the order they were in the initial queue.
In the example above, if we divide the plane into two zones: rows 5–10 and rows 1–4, then during the first
phase the passengers will take seats 6A, 5F, 10E, 8B, 5A, and during the second phase the passengers
will take seats 4B, 2E, 2A, 3F, 1C, in this order. The total difficulty of the boarding will be 6.
Help Peter to find the division of the plane into k zones which minimizes the total difficulty of the
boarding, given a specific queue of passengers.
Input
The first line contains three integers n (1 ≤ n ≤ 1000), s (1 ≤ s ≤ 1000), and k (1 ≤ k ≤ 50; k ≤ s).
The next line contains n integers r i (1 ≤ r i ≤ s).
Each row is occupied by at most 6 passengers.
Output
Output one number, the minimal possible difficulty of the boarding.
Example
flight.in                             flight.out
10 12 2                            6
6 4 2 5 2 3 1 11 8 5

此题做的倒是一波三折,

  f[i][j]=min(f[k][j-1]+w[k+1][i])

起先w[][]不会算,凭借wlm牛给的线段树思路起家,之后我调试代码,思路中断,混淆,最终还是wlm牛成功计算出了w[][]

然而在我的kn^2的朴素思想下,过了样例,草草上交,”in Queue“,CF跪了,草!

不管其他,以防万一,匆匆把代码改成了四边形优化,O(nk),其实很像poj1160,只是为了防止超时。

靠!WA on test 5!!! 最后一刻看朴素提交竟然WA了,而四边形优化还在 in Queue,目测裸算法跪了,加优化又能如何?

吃饭,回新校区,一路上和这群acm伙伴各种hi,别是高兴啊。

挖槽!打开电脑时(笔记本已断网),发现四边形优化 Run on test 40,惊呆了。

马上联网一看,A了,吐血啊!!~~~~~~~————————****¥¥¥%%%####

第二天又看了别人代码,也明白了正解。

题目大意:

  乘客按顺序进客机,每进来一个乘客会产生不满度(difficulty),是他之前进来的且坐在他前面的乘客人数,现在可以分k个机厢,求最少difficulty

思路:

  f[i][j]=min(f[k][j-1]+w[k+1][i])

  w[][]求法巧妙,看正解代码即可知晓。

以下给出

线段树+四边形优化代码 O(n^2logn+nk)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <map>
#include <deque>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define INF 0x3f3f3f3f
#define N 1005 using namespace std;
struct Point
{
int r,res;
}a[N]; int w[N][N],n,s,k,sum[N*N],f[N][N],ss[N][N];
bool isCalc[N]; bool cmp(Point a, Point b)
{
if(a.r==b.r)
return a.res>b.res;
return a.r<b.r;
} void PushUp(int rt){
sum[rt]=sum[rt*]+sum[rt*+];
}
void build(int l, int r, int rt)
{
sum[rt]=;
if(l==r) return;
int m=(l+r)/;
build(l,m,rt*);
build(m+,r,rt*+);
}
void update(int x, int l, int r, int rt)
{
if(l==r)
{
sum[rt]=;
return;
}
int m=(l+r)/;
if(x<=m) update(x,l,m,rt*);
else update(x,m+,r,rt*+);
PushUp(rt);
}
int query(int x, int y, int l, int r, int rt)
{
if(x>y) return ;
if(x<=l&&y>=r) return sum[rt];
int m=(l+r)/;
int s=;
if(x<=m) s+=query(x,y,l,m,rt*);
if(y>m) s+=query(x,y,m+,r,rt*+);
return s;
}
int main()
{
// freopen("flight.in","r",stdin);
// freopen("flight.out","w",stdout);
scanf("%d%d%d",&n,&s,&k);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i].r);
a[i].res=i;
}
sort(a+,a+n+,cmp);
int head=,d=;
for(int i=; i<=s; i++)
{
build(,n,);
memset(isCalc,,sizeof(isCalc));
d=i;
int tmp=;
while(a[head].r<i) head++;
for(int j=head; j<=n; j++)
{
update(a[j].res,,n,);
while(d<a[j].r)
{
if(!isCalc[d])
{
w[i][d]=tmp;
}
d++;
}
tmp+=query(,a[j].res-,,n,);
w[i][a[j].r]=tmp;
isCalc[a[j].r]=;
}
while(d<=s)
{
if(!isCalc[d])
{
w[i][d]=w[i][d-];
}
d++;
}
}
for(int i=; i<=s; i++)
for(int j=; j<=k; j++)
f[i][j]=INF;
for(int i=; i<=s; i++)
f[i][]=w[][i]; for(int j=; j<=k; j++)
{
ss[s+][j]=s-;
for(int i=s; i>=j; i--)
{
for(int l=ss[i][j-]; l<=ss[i+][j]; l++)
if(f[i][j]>f[l][j-]+w[l+][i])
{
f[i][j]=f[l][j-]+w[l+][i];
ss[i][j]=l;
}
}
}
printf("%d",f[s][k]);
return ;
}

线段树+朴素代码O(n^2logn+kn^2)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <map>
#include <deque>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define INF 0x3f3f3f3f
#define N 1005 using namespace std;
struct Point
{
int r,res;
}a[N]; int w[N][N],n,s,k,sum[N*N],f[N][N];
bool isCalc[N]; bool cmp(Point a, Point b)
{
if(a.r==b.r)
return a.res>b.res;
return a.r<b.r;
} void PushUp(int rt){
sum[rt]=sum[rt*]+sum[rt*+];
}
void build(int l, int r, int rt)
{
sum[rt]=;
if(l==r) return;
int m=(l+r)/;
build(l,m,rt*);
build(m+,r,rt*+);
}
void update(int x, int l, int r, int rt)
{
if(l==r)
{
sum[rt]=;
return;
}
int m=(l+r)/;
if(x<=m) update(x,l,m,rt*);
else update(x,m+,r,rt*+);
PushUp(rt);
}
int query(int x, int y, int l, int r, int rt)
{
if(x>y) return ;
if(x<=l&&y>=r) return sum[rt];
int m=(l+r)/;
int s=;
if(x<=m) s+=query(x,y,l,m,rt*);
if(y>m) s+=query(x,y,m+,r,rt*+);
return s;
} int main()
{
freopen("flight.in","r",stdin);
freopen("flight.out","w",stdout);
scanf("%d%d%d",&n,&s,&k);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i].r);
a[i].res=i;
}
sort(a+,a+n+,cmp);
int head=,d=;
for(int i=; i<=s; i++)
{
build(,n,);
memset(isCalc,,sizeof(isCalc));
d=i;
int tmp=;
while(a[head].r<i) head++;
for(int j=head; j<=n; j++)
{
update(a[j].res,,n,);
while(d<a[j].r)
{
if(!isCalc[d])
{
w[i][d]=tmp;
}
d++;
}
tmp+=query(,a[j].res-,,n,);
w[i][a[j].r]=tmp;
isCalc[a[j].r]=;
}
while(d<=s)
{
if(!isCalc[d])
{
w[i][d]=w[i][d-];
}
d++;
}
} for(int i=; i<=s; i++)
for(int j=; j<=k; j++)
f[i][j]=INF;
for(int i=; i<=s; i++)
f[i][]=w[][i];
for(int i=; i<=s; i++)
{
for(int j=; j<=min(i,k); j++)
for(int l=; l<i; l++)
{
if(f[i][j]>f[l][j-]+w[l+][i])
f[i][j]=f[l][j-]+w[l+][i];
}
}
printf("%d",f[s][k]);
return ;
}

正解代码O(n^2+nk)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <map>
#include <deque>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define INF 0x3f3f3f3f
#define N 1005 using namespace std; int w[N][N],n,s,k,f[N][N],ss[N][N],a[N]; int main()
{
// freopen("flight.in","r",stdin);
// freopen("flight.out","w",stdout);
scanf("%d%d%d",&n,&s,&k);
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=; i<=n; i++)
for(int j=i; j<=n; j++)
if(a[i]<a[j])
w[a[i]][a[j]]++;    //w[i][j]表示第i排对第j排的difficulty
for(int j=; j<=s; j++)
{
for(int i=; i<=j; i++)
w[i][j]+=w[i-][j];  //w[i][j]表示前i排对第j排的difficulty
int sum=w[j][j];
for(int i=j; i>=; i--)
w[i][j]=sum-w[i-][j]; //w[i][j]表示第i-j排对第j排的difficlty
}
for(int i=; i<=s; i++)
for(int j=i; j<=s; j++)
w[i][j]+=w[i][j-];  //w[i][j]表示第i-j排对第i-j排的difficulty
// for(int i=1; i<=s; i++)
// for(int j=i; j<=s; j++)
// printf("%d %d %d\n",i,j,w[i][j]);
for(int i=; i<=s; i++)
for(int j=; j<=k; j++)
f[i][j]=INF;
for(int i=; i<=s; i++)
f[i][]=w[][i]; for(int j=; j<=k; j++)
{
ss[s+][j]=s-;
for(int i=s; i>=j; i--)
{
for(int l=ss[i][j-]; l<=ss[i+][j]; l++)
if(f[i][j]>f[l][j-]+w[l+][i])
{
f[i][j]=f[l][j-]+w[l+][i];
ss[i][j]=l;
}
}
}
printf("%d",f[s][k]);
return ;
}

Codeforces_GYM Flight Boarding Optimization的更多相关文章

  1. Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp

    Flight Boarding Optimization 题目连接: http://codeforces.com/gym/100269/attachments Description Peter is ...

  2. Gym - 100269F Flight Boarding Optimization(dp+树状数组)

    原题链接 题意: 现在有n个人,s个位置和你可以划分长k个区域你可以把s个位置划分成k个区域,这样每个人坐下你的代价是该区域内,在你之前比你小的人的数量问你怎么划分这s个位置(当然,每个区域必须是连续 ...

  3. Codeforces Gym 100269A Arrangement of Contest 水题

    Problem A. Arrangement of Contest 题目连接: http://codeforces.com/gym/100269/attachments Description Lit ...

  4. theano scan optimization

    selected from Theano Doc Optimizing Scan performance Minimizing Scan Usage performan as much of the ...

  5. [Project Name] was compiled with optimization - stepping may behave oddly; variables may not be available.

    控制台输出的时候显示一串这样的信息:[Project Name] was compiled with optimization - stepping may behave oddly; variabl ...

  6. Mvc 之System.Web.Optimization 压缩合并如何让*.min.js 脚本不再压缩

    最近项目中用到了easy ui ,但是在配置BundleConfig 的时候出现了问题,easy ui的脚本jquery.easyui.min.js 压缩后出现各种脚本错误,总是莫名其妙的 i标量错误 ...

  7. MySQL Range Optimization

    8.2.1.3 Range Optimization MYSQL的Range Optimization的目的还是尽可能的使用索引 The range access method uses a sing ...

  8. 命名空间“System.Web”中不存在类型或命名空间名称“Optimization”(是否缺少程序集引用?)

    今天,在.net4.5,mvc4下新建了个区域,运行起来就报这个错误: 命名空间"System.Web"中不存在类型或命名空间名称"Optimization"( ...

  9. [阅读笔记]Software optimization resources

    http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++   7. The efficiency of differe ...

随机推荐

  1. clion windows 开发配置

    1.下载clion 并且安装. 地址 : http://download-cf.jetbrains.com/cpp/clion-1.0.1.exe 2.安装cygwin  地址: https://cy ...

  2. SiteMesh3 介绍和使用

        Sitemesh是由一个基于Web页面布局.装饰及与现存Web应用整合的框架.它能帮助我们再由大量页面工程的项目中创建一致的页面布局和外观,如一 致的导航条.一致的banner.一致的版权等. ...

  3. Linux命令zip和unzip

    问题描述:        使用Linux中命令zip和unzip 问题解决: 命令名: zip  功能说明:压缩文件. 语 法:zip [-AcdDfFghjJKlLmoqrSTuvVwXyz$][- ...

  4. 【POJ】【2420】A Star not a Tree?

    模拟退火 Orz HZWER 这题的题意是在二维平面内找一点,使得这点到给定的n个点的距离和最小……0.0 模拟退火算法请戳这里 //POJ 2420 #include<ctime> #i ...

  5. 使用NodeJs,实现数据抓取

    学习笔记 前言 近期做一个数据抓爬工具,最开始使用的是C#控制台应用,同时正则表达式去过滤数据,看着还行,可每次运行都依附于.net framework很是不爽,于是想整点其他的方法.本人还是比较喜欢 ...

  6. CentOS 6.4 搭建SVN服务器

    SVN作为新一代代码版本管理工具,有很多优点,管理方便,逻辑明确,安全性高,代码一致性高.SVN数据存储有两种方式,BDB(事务安全表类型)和FSFS(一种不需要数据库的存储系统),为了避免在服务器连 ...

  7. HTTP/2 对 Web 性能的影响(上)

    一.前言 HTTP/2 于 2015 年 5 月正式推出.自诞生以来,它就一直在影响着网络性能最佳实践.在本篇文章中,我们将讨论 HTTP/2 的二进制帧.延迟削减.潜在利弊以及相应的应对措施. 超文 ...

  8. maven 命令备忘

    1. 打包时 不执行测试 mvn package -Dmaven.test.skip=true

  9. http://www.aboutyun.com/thread-6551-1-1.html

    http://www.aboutyun.com/thread-6551-1-1.html

  10. Floodlight 防火墙是如何起作用的

    前言 用mininet + floodlight搭建好环境之后,运行flooglight,然后在mininet中建立网络拓扑,建好之后,pingall,所有host之间可以ping通. 然后向控制器f ...